Copied to
clipboard

G = C20.55D4order 160 = 25·5

12nd non-split extension by C20 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.55D4, C23.2Dic5, C10.11M4(2), (C2×C10)⋊4C8, C54(C22⋊C8), C22⋊(C52C8), C10.19(C2×C8), (C2×C20).15C4, (C2×C4).94D10, (C2×C4).4Dic5, (C22×C4).1D5, C4.30(C5⋊D4), (C22×C10).9C4, (C22×C20).11C2, C2.3(C4.Dic5), C2.1(C23.D5), C22.9(C2×Dic5), C10.23(C22⋊C4), (C2×C20).108C22, C2.5(C2×C52C8), (C2×C52C8)⋊10C2, (C2×C10).47(C2×C4), SmallGroup(160,37)

Series: Derived Chief Lower central Upper central

C1C10 — C20.55D4
C1C5C10C20C2×C20C2×C52C8 — C20.55D4
C5C10 — C20.55D4
C1C2×C4C22×C4

Generators and relations for C20.55D4
 G = < a,b,c | a20=1, b4=a10, c2=a5, bab-1=cac-1=a9, cbc-1=a15b3 >

2C2
2C2
2C4
2C22
2C22
2C10
2C10
2C2×C4
2C2×C4
10C8
10C8
2C2×C10
2C20
2C2×C10
5C2×C8
5C2×C8
2C52C8
2C2×C20
2C52C8
2C2×C20
5C22⋊C8

Smallest permutation representation of C20.55D4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 38 70 42 11 28 80 52)(2 27 71 51 12 37 61 41)(3 36 72 60 13 26 62 50)(4 25 73 49 14 35 63 59)(5 34 74 58 15 24 64 48)(6 23 75 47 16 33 65 57)(7 32 76 56 17 22 66 46)(8 21 77 45 18 31 67 55)(9 30 78 54 19 40 68 44)(10 39 79 43 20 29 69 53)
(1 57 6 42 11 47 16 52)(2 46 7 51 12 56 17 41)(3 55 8 60 13 45 18 50)(4 44 9 49 14 54 19 59)(5 53 10 58 15 43 20 48)(21 77 26 62 31 67 36 72)(22 66 27 71 32 76 37 61)(23 75 28 80 33 65 38 70)(24 64 29 69 34 74 39 79)(25 73 30 78 35 63 40 68)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,38,70,42,11,28,80,52)(2,27,71,51,12,37,61,41)(3,36,72,60,13,26,62,50)(4,25,73,49,14,35,63,59)(5,34,74,58,15,24,64,48)(6,23,75,47,16,33,65,57)(7,32,76,56,17,22,66,46)(8,21,77,45,18,31,67,55)(9,30,78,54,19,40,68,44)(10,39,79,43,20,29,69,53), (1,57,6,42,11,47,16,52)(2,46,7,51,12,56,17,41)(3,55,8,60,13,45,18,50)(4,44,9,49,14,54,19,59)(5,53,10,58,15,43,20,48)(21,77,26,62,31,67,36,72)(22,66,27,71,32,76,37,61)(23,75,28,80,33,65,38,70)(24,64,29,69,34,74,39,79)(25,73,30,78,35,63,40,68)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,38,70,42,11,28,80,52)(2,27,71,51,12,37,61,41)(3,36,72,60,13,26,62,50)(4,25,73,49,14,35,63,59)(5,34,74,58,15,24,64,48)(6,23,75,47,16,33,65,57)(7,32,76,56,17,22,66,46)(8,21,77,45,18,31,67,55)(9,30,78,54,19,40,68,44)(10,39,79,43,20,29,69,53), (1,57,6,42,11,47,16,52)(2,46,7,51,12,56,17,41)(3,55,8,60,13,45,18,50)(4,44,9,49,14,54,19,59)(5,53,10,58,15,43,20,48)(21,77,26,62,31,67,36,72)(22,66,27,71,32,76,37,61)(23,75,28,80,33,65,38,70)(24,64,29,69,34,74,39,79)(25,73,30,78,35,63,40,68) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,38,70,42,11,28,80,52),(2,27,71,51,12,37,61,41),(3,36,72,60,13,26,62,50),(4,25,73,49,14,35,63,59),(5,34,74,58,15,24,64,48),(6,23,75,47,16,33,65,57),(7,32,76,56,17,22,66,46),(8,21,77,45,18,31,67,55),(9,30,78,54,19,40,68,44),(10,39,79,43,20,29,69,53)], [(1,57,6,42,11,47,16,52),(2,46,7,51,12,56,17,41),(3,55,8,60,13,45,18,50),(4,44,9,49,14,54,19,59),(5,53,10,58,15,43,20,48),(21,77,26,62,31,67,36,72),(22,66,27,71,32,76,37,61),(23,75,28,80,33,65,38,70),(24,64,29,69,34,74,39,79),(25,73,30,78,35,63,40,68)]])

C20.55D4 is a maximal subgroup of
(C2×D20)⋊C4  C4⋊Dic5⋊C4  C53(C23⋊C8)  (C2×Dic5)⋊C8  C24.Dic5  (C2×C20)⋊C8  C4⋊C4⋊Dic5  C10.29C4≀C2  Dic5.14M4(2)  Dic5.9M4(2)  C408C4⋊C2  D5×C22⋊C8  D107M4(2)  C22⋊C8⋊D5  C42.6Dic5  C42.7Dic5  (C2×C10).40D8  C4⋊C4.228D10  C4⋊C4.230D10  C4⋊C4.231D10  C4⋊C4.233D10  C42.187D10  C4⋊C4.236D10  D4×C52C8  C42.47D10  C207M4(2)  (C2×C10).D8  C4⋊D4.D5  (C2×D4).D10  D2016D4  D2017D4  Dic1017D4  C22⋊Q8.D5  (C2×C10).Q16  C10.(C4○D8)  D20.36D4  D20.37D4  Dic10.37D4  C8×C5⋊D4  C4032D4  C40⋊D4  C4018D4  C24.4Dic5  (C2×C10)⋊8D8  (C5×D4).31D4  (C5×Q8)⋊13D4  (C2×C10)⋊8Q16  (D4×C10).24C4  (C5×D4)⋊14D4  (C5×D4).32D4  C60.94D4  C60.212D4  C20.S4
C20.55D4 is a maximal quotient of
(C2×C20)⋊8C8  C24.Dic5  (C2×C20)⋊C8  C20.57D8  C20.26Q16  C40.91D4  C40.D4  C40.92D4  C60.94D4  C60.212D4

52 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F5A5B8A···8H10A···10N20A···20P
order122222444444558···810···1020···20
size1111221111222210···102···22···2

52 irreducible representations

dim111111222222222
type+++++-+-
imageC1C2C2C4C4C8D4D5M4(2)Dic5D10Dic5C5⋊D4C52C8C4.Dic5
kernelC20.55D4C2×C52C8C22×C20C2×C20C22×C10C2×C10C20C22×C4C10C2×C4C2×C4C23C4C22C2
# reps121228222222888

Matrix representation of C20.55D4 in GL3(𝔽41) generated by

900
0180
0016
,
300
001
0400
,
3800
001
010
G:=sub<GL(3,GF(41))| [9,0,0,0,18,0,0,0,16],[3,0,0,0,0,40,0,1,0],[38,0,0,0,0,1,0,1,0] >;

C20.55D4 in GAP, Magma, Sage, TeX

C_{20}._{55}D_4
% in TeX

G:=Group("C20.55D4");
// GroupNames label

G:=SmallGroup(160,37);
// by ID

G=gap.SmallGroup(160,37);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,86,4613]);
// Polycyclic

G:=Group<a,b,c|a^20=1,b^4=a^10,c^2=a^5,b*a*b^-1=c*a*c^-1=a^9,c*b*c^-1=a^15*b^3>;
// generators/relations

Export

Subgroup lattice of C20.55D4 in TeX

׿
×
𝔽