Extensions 1→N→G→Q→1 with N=C4 and Q=Dic10

Direct product G=N×Q with N=C4 and Q=Dic10
dρLabelID
C4×Dic10160C4xDic10160,89

Semidirect products G=N:Q with N=C4 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C41Dic10 = C20⋊Q8φ: Dic10/Dic5C2 ⊆ Aut C4160C4:1Dic10160,109
C42Dic10 = C202Q8φ: Dic10/C20C2 ⊆ Aut C4160C4:2Dic10160,90

Non-split extensions G=N.Q with N=C4 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C4.1Dic10 = C10.D8φ: Dic10/Dic5C2 ⊆ Aut C4160C4.1Dic10160,14
C4.2Dic10 = C20.Q8φ: Dic10/Dic5C2 ⊆ Aut C4160C4.2Dic10160,15
C4.3Dic10 = C4.Dic10φ: Dic10/Dic5C2 ⊆ Aut C4160C4.3Dic10160,111
C4.4Dic10 = C406C4φ: Dic10/C20C2 ⊆ Aut C4160C4.4Dic10160,24
C4.5Dic10 = C405C4φ: Dic10/C20C2 ⊆ Aut C4160C4.5Dic10160,25
C4.6Dic10 = C20.6Q8φ: Dic10/C20C2 ⊆ Aut C4160C4.6Dic10160,91
C4.7Dic10 = C203C8central extension (φ=1)160C4.7Dic10160,11
C4.8Dic10 = C20.8Q8central extension (φ=1)160C4.8Dic10160,21

׿
×
𝔽