Copied to
clipboard

G = C20.8Q8order 160 = 25·5

5th non-split extension by C20 of Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.8Q8, Dic51C8, C20.51D4, C4.8Dic10, C10.6M4(2), C54(C4⋊C8), (C2×C8).1D5, C2.4(C8×D5), (C2×C40).1C2, C10.13(C2×C8), (C2×C4).91D10, C10.11(C4⋊C4), C22.9(C4×D5), C2.1(C8⋊D5), C4.26(C5⋊D4), (C4×Dic5).5C2, (C2×Dic5).3C4, (C2×C20).105C22, C2.1(C10.D4), (C2×C52C8).9C2, (C2×C10).30(C2×C4), SmallGroup(160,21)

Series: Derived Chief Lower central Upper central

C1C10 — C20.8Q8
C1C5C10C20C2×C20C4×Dic5 — C20.8Q8
C5C10 — C20.8Q8
C1C2×C4C2×C8

Generators and relations for C20.8Q8
 G = < a,b,c | a20=1, b4=a10, c2=a15b2, ab=ba, cac-1=a9, cbc-1=a15b3 >

5C4
5C4
10C4
2C8
5C2×C4
5C2×C4
10C8
2Dic5
5C2×C8
5C42
2C40
2C52C8
5C4⋊C8

Smallest permutation representation of C20.8Q8
Regular action on 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 81 130 107 11 91 140 117)(2 82 131 108 12 92 121 118)(3 83 132 109 13 93 122 119)(4 84 133 110 14 94 123 120)(5 85 134 111 15 95 124 101)(6 86 135 112 16 96 125 102)(7 87 136 113 17 97 126 103)(8 88 137 114 18 98 127 104)(9 89 138 115 19 99 128 105)(10 90 139 116 20 100 129 106)(21 145 79 59 31 155 69 49)(22 146 80 60 32 156 70 50)(23 147 61 41 33 157 71 51)(24 148 62 42 34 158 72 52)(25 149 63 43 35 159 73 53)(26 150 64 44 36 160 74 54)(27 151 65 45 37 141 75 55)(28 152 66 46 38 142 76 56)(29 153 67 47 39 143 77 57)(30 154 68 48 40 144 78 58)
(1 80 125 27)(2 69 126 36)(3 78 127 25)(4 67 128 34)(5 76 129 23)(6 65 130 32)(7 74 131 21)(8 63 132 30)(9 72 133 39)(10 61 134 28)(11 70 135 37)(12 79 136 26)(13 68 137 35)(14 77 138 24)(15 66 139 33)(16 75 140 22)(17 64 121 31)(18 73 122 40)(19 62 123 29)(20 71 124 38)(41 90 152 111)(42 99 153 120)(43 88 154 109)(44 97 155 118)(45 86 156 107)(46 95 157 116)(47 84 158 105)(48 93 159 114)(49 82 160 103)(50 91 141 112)(51 100 142 101)(52 89 143 110)(53 98 144 119)(54 87 145 108)(55 96 146 117)(56 85 147 106)(57 94 148 115)(58 83 149 104)(59 92 150 113)(60 81 151 102)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,130,107,11,91,140,117)(2,82,131,108,12,92,121,118)(3,83,132,109,13,93,122,119)(4,84,133,110,14,94,123,120)(5,85,134,111,15,95,124,101)(6,86,135,112,16,96,125,102)(7,87,136,113,17,97,126,103)(8,88,137,114,18,98,127,104)(9,89,138,115,19,99,128,105)(10,90,139,116,20,100,129,106)(21,145,79,59,31,155,69,49)(22,146,80,60,32,156,70,50)(23,147,61,41,33,157,71,51)(24,148,62,42,34,158,72,52)(25,149,63,43,35,159,73,53)(26,150,64,44,36,160,74,54)(27,151,65,45,37,141,75,55)(28,152,66,46,38,142,76,56)(29,153,67,47,39,143,77,57)(30,154,68,48,40,144,78,58), (1,80,125,27)(2,69,126,36)(3,78,127,25)(4,67,128,34)(5,76,129,23)(6,65,130,32)(7,74,131,21)(8,63,132,30)(9,72,133,39)(10,61,134,28)(11,70,135,37)(12,79,136,26)(13,68,137,35)(14,77,138,24)(15,66,139,33)(16,75,140,22)(17,64,121,31)(18,73,122,40)(19,62,123,29)(20,71,124,38)(41,90,152,111)(42,99,153,120)(43,88,154,109)(44,97,155,118)(45,86,156,107)(46,95,157,116)(47,84,158,105)(48,93,159,114)(49,82,160,103)(50,91,141,112)(51,100,142,101)(52,89,143,110)(53,98,144,119)(54,87,145,108)(55,96,146,117)(56,85,147,106)(57,94,148,115)(58,83,149,104)(59,92,150,113)(60,81,151,102)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,130,107,11,91,140,117)(2,82,131,108,12,92,121,118)(3,83,132,109,13,93,122,119)(4,84,133,110,14,94,123,120)(5,85,134,111,15,95,124,101)(6,86,135,112,16,96,125,102)(7,87,136,113,17,97,126,103)(8,88,137,114,18,98,127,104)(9,89,138,115,19,99,128,105)(10,90,139,116,20,100,129,106)(21,145,79,59,31,155,69,49)(22,146,80,60,32,156,70,50)(23,147,61,41,33,157,71,51)(24,148,62,42,34,158,72,52)(25,149,63,43,35,159,73,53)(26,150,64,44,36,160,74,54)(27,151,65,45,37,141,75,55)(28,152,66,46,38,142,76,56)(29,153,67,47,39,143,77,57)(30,154,68,48,40,144,78,58), (1,80,125,27)(2,69,126,36)(3,78,127,25)(4,67,128,34)(5,76,129,23)(6,65,130,32)(7,74,131,21)(8,63,132,30)(9,72,133,39)(10,61,134,28)(11,70,135,37)(12,79,136,26)(13,68,137,35)(14,77,138,24)(15,66,139,33)(16,75,140,22)(17,64,121,31)(18,73,122,40)(19,62,123,29)(20,71,124,38)(41,90,152,111)(42,99,153,120)(43,88,154,109)(44,97,155,118)(45,86,156,107)(46,95,157,116)(47,84,158,105)(48,93,159,114)(49,82,160,103)(50,91,141,112)(51,100,142,101)(52,89,143,110)(53,98,144,119)(54,87,145,108)(55,96,146,117)(56,85,147,106)(57,94,148,115)(58,83,149,104)(59,92,150,113)(60,81,151,102) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,81,130,107,11,91,140,117),(2,82,131,108,12,92,121,118),(3,83,132,109,13,93,122,119),(4,84,133,110,14,94,123,120),(5,85,134,111,15,95,124,101),(6,86,135,112,16,96,125,102),(7,87,136,113,17,97,126,103),(8,88,137,114,18,98,127,104),(9,89,138,115,19,99,128,105),(10,90,139,116,20,100,129,106),(21,145,79,59,31,155,69,49),(22,146,80,60,32,156,70,50),(23,147,61,41,33,157,71,51),(24,148,62,42,34,158,72,52),(25,149,63,43,35,159,73,53),(26,150,64,44,36,160,74,54),(27,151,65,45,37,141,75,55),(28,152,66,46,38,142,76,56),(29,153,67,47,39,143,77,57),(30,154,68,48,40,144,78,58)], [(1,80,125,27),(2,69,126,36),(3,78,127,25),(4,67,128,34),(5,76,129,23),(6,65,130,32),(7,74,131,21),(8,63,132,30),(9,72,133,39),(10,61,134,28),(11,70,135,37),(12,79,136,26),(13,68,137,35),(14,77,138,24),(15,66,139,33),(16,75,140,22),(17,64,121,31),(18,73,122,40),(19,62,123,29),(20,71,124,38),(41,90,152,111),(42,99,153,120),(43,88,154,109),(44,97,155,118),(45,86,156,107),(46,95,157,116),(47,84,158,105),(48,93,159,114),(49,82,160,103),(50,91,141,112),(51,100,142,101),(52,89,143,110),(53,98,144,119),(54,87,145,108),(55,96,146,117),(56,85,147,106),(57,94,148,115),(58,83,149,104),(59,92,150,113),(60,81,151,102)]])

C20.8Q8 is a maximal subgroup of
C8×Dic10  C4011Q8  C42.282D10  C42.243D10  C40⋊Q8  C42.182D10  C42.185D10  Dic5.14M4(2)  Dic5.9M4(2)  C408C4⋊C2  C55(C8×D4)  D104M4(2)  Dic52M4(2)  C52C826D4  Dic5.14D8  D4⋊Dic10  Dic102D4  D4.Dic10  D4.2Dic10  Dic10.D4  D203D4  D20.D4  Q8⋊Dic10  Dic5⋊Q16  Dic5.9Q16  Q8.Dic10  Dic10.11D4  Q8.2Dic10  Dic5⋊SD16  D20.12D4  Dic5.5M4(2)  Dic105C8  C42.198D10  D5×C4⋊C8  C205M4(2)  C42.30D10  Dic10⋊Q8  Dic10.Q8  D20⋊Q8  D20.Q8  Dic102Q8  Dic10.2Q8  D202Q8  D20.2Q8  C20.65(C4⋊C4)  C8×C5⋊D4  C4032D4  Dic55M4(2)  C20.51(C4⋊C4)  C40⋊D4  C4018D4  Dic5⋊D8  (C2×D8).D5  Dic53SD16  Dic55SD16  (C5×D4).D4  (C5×Q8).D4  Dic53Q16  (C2×Q16)⋊D5  C60.13Q8  C60.14Q8  C60.26Q8
C20.8Q8 is a maximal quotient of
C20.53D8  C20.39SD16  C40.88D4  C40.9Q8  (C2×C40)⋊15C4  C60.13Q8  C60.14Q8  C60.26Q8

52 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H5A5B8A8B8C8D8E8F8G8H10A···10F20A···20H40A···40P
order122244444444558888888810···1020···2040···40
size1111111110101010222222101010102···22···22···2

52 irreducible representations

dim1111112222222222
type+++++-++-
imageC1C2C2C2C4C8D4Q8D5M4(2)D10Dic10C5⋊D4C4×D5C8×D5C8⋊D5
kernelC20.8Q8C2×C52C8C4×Dic5C2×C40C2×Dic5Dic5C20C20C2×C8C10C2×C4C4C4C22C2C2
# reps1111481122244488

Matrix representation of C20.8Q8 in GL4(𝔽41) generated by

133200
9000
00032
00919
,
3000
0300
00827
001433
,
31800
363800
0033
002438
G:=sub<GL(4,GF(41))| [13,9,0,0,32,0,0,0,0,0,0,9,0,0,32,19],[3,0,0,0,0,3,0,0,0,0,8,14,0,0,27,33],[3,36,0,0,18,38,0,0,0,0,3,24,0,0,3,38] >;

C20.8Q8 in GAP, Magma, Sage, TeX

C_{20}._8Q_8
% in TeX

G:=Group("C20.8Q8");
// GroupNames label

G:=SmallGroup(160,21);
// by ID

G=gap.SmallGroup(160,21);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,121,31,86,4613]);
// Polycyclic

G:=Group<a,b,c|a^20=1,b^4=a^10,c^2=a^15*b^2,a*b=b*a,c*a*c^-1=a^9,c*b*c^-1=a^15*b^3>;
// generators/relations

Export

Subgroup lattice of C20.8Q8 in TeX

׿
×
𝔽