Copied to
clipboard

G = C405C4order 160 = 25·5

1st semidirect product of C40 and C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C405C4, C81Dic5, C10.4D8, C2.1D40, C20.5Q8, C10.2Q16, C2.2Dic20, C4.5Dic10, C22.9D20, (C2×C8).3D5, C53(C2.D8), (C2×C40).5C2, C20.55(C2×C4), (C2×C4).69D10, (C2×C10).14D4, C4⋊Dic5.3C2, C10.13(C4⋊C4), C4.7(C2×Dic5), C2.4(C4⋊Dic5), (C2×C20).82C22, SmallGroup(160,25)

Series: Derived Chief Lower central Upper central

C1C20 — C405C4
C1C5C10C2×C10C2×C20C4⋊Dic5 — C405C4
C5C10C20 — C405C4
C1C22C2×C4C2×C8

Generators and relations for C405C4
 G = < a,b | a40=b4=1, bab-1=a-1 >

20C4
20C4
10C2×C4
10C2×C4
4Dic5
4Dic5
5C4⋊C4
5C4⋊C4
2C2×Dic5
2C2×Dic5
5C2.D8

Smallest permutation representation of C405C4
Regular action on 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 129 55 87)(2 128 56 86)(3 127 57 85)(4 126 58 84)(5 125 59 83)(6 124 60 82)(7 123 61 81)(8 122 62 120)(9 121 63 119)(10 160 64 118)(11 159 65 117)(12 158 66 116)(13 157 67 115)(14 156 68 114)(15 155 69 113)(16 154 70 112)(17 153 71 111)(18 152 72 110)(19 151 73 109)(20 150 74 108)(21 149 75 107)(22 148 76 106)(23 147 77 105)(24 146 78 104)(25 145 79 103)(26 144 80 102)(27 143 41 101)(28 142 42 100)(29 141 43 99)(30 140 44 98)(31 139 45 97)(32 138 46 96)(33 137 47 95)(34 136 48 94)(35 135 49 93)(36 134 50 92)(37 133 51 91)(38 132 52 90)(39 131 53 89)(40 130 54 88)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,129,55,87)(2,128,56,86)(3,127,57,85)(4,126,58,84)(5,125,59,83)(6,124,60,82)(7,123,61,81)(8,122,62,120)(9,121,63,119)(10,160,64,118)(11,159,65,117)(12,158,66,116)(13,157,67,115)(14,156,68,114)(15,155,69,113)(16,154,70,112)(17,153,71,111)(18,152,72,110)(19,151,73,109)(20,150,74,108)(21,149,75,107)(22,148,76,106)(23,147,77,105)(24,146,78,104)(25,145,79,103)(26,144,80,102)(27,143,41,101)(28,142,42,100)(29,141,43,99)(30,140,44,98)(31,139,45,97)(32,138,46,96)(33,137,47,95)(34,136,48,94)(35,135,49,93)(36,134,50,92)(37,133,51,91)(38,132,52,90)(39,131,53,89)(40,130,54,88)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,129,55,87)(2,128,56,86)(3,127,57,85)(4,126,58,84)(5,125,59,83)(6,124,60,82)(7,123,61,81)(8,122,62,120)(9,121,63,119)(10,160,64,118)(11,159,65,117)(12,158,66,116)(13,157,67,115)(14,156,68,114)(15,155,69,113)(16,154,70,112)(17,153,71,111)(18,152,72,110)(19,151,73,109)(20,150,74,108)(21,149,75,107)(22,148,76,106)(23,147,77,105)(24,146,78,104)(25,145,79,103)(26,144,80,102)(27,143,41,101)(28,142,42,100)(29,141,43,99)(30,140,44,98)(31,139,45,97)(32,138,46,96)(33,137,47,95)(34,136,48,94)(35,135,49,93)(36,134,50,92)(37,133,51,91)(38,132,52,90)(39,131,53,89)(40,130,54,88) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,129,55,87),(2,128,56,86),(3,127,57,85),(4,126,58,84),(5,125,59,83),(6,124,60,82),(7,123,61,81),(8,122,62,120),(9,121,63,119),(10,160,64,118),(11,159,65,117),(12,158,66,116),(13,157,67,115),(14,156,68,114),(15,155,69,113),(16,154,70,112),(17,153,71,111),(18,152,72,110),(19,151,73,109),(20,150,74,108),(21,149,75,107),(22,148,76,106),(23,147,77,105),(24,146,78,104),(25,145,79,103),(26,144,80,102),(27,143,41,101),(28,142,42,100),(29,141,43,99),(30,140,44,98),(31,139,45,97),(32,138,46,96),(33,137,47,95),(34,136,48,94),(35,135,49,93),(36,134,50,92),(37,133,51,91),(38,132,52,90),(39,131,53,89),(40,130,54,88)]])

C405C4 is a maximal subgroup of
C40.2Q8  C10.SD32  C40.78D4  C8013C4  C8014C4  D407C4  C10.D16  C40.15D4  C408Q8  C40.13Q8  C4×D40  C4×Dic20  C8⋊Dic10  C42.16D10  C23.35D20  C23.10D20  C22.D40  C23.13D20  Dic5.14D8  D4.2Dic10  D10.12D8  C405C4⋊C2  Dic5.9Q16  Q8.Dic10  D10.7Q16  (C2×C8).D10  Dic10.3Q8  D204Q8  D20.3Q8  C20.7Q16  C403Q8  C8⋊(C4×D5)  C402Q8  C8.6Dic10  D5×C2.D8  C8.27(C4×D5)  C23.22D20  C4029D4  C40.82D4  C23.47D20  C402D4  D8×Dic5  C406D4  SD16⋊Dic5  C408D4  Q16×Dic5  D103Q16  C60.5Q8  C1209C4
C405C4 is a maximal quotient of
C405C8  C8013C4  C8014C4  C80.6C4  C20.39C42  C60.5Q8  C1209C4

46 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F5A5B8A8B8C8D10A···10F20A···20H40A···40P
order122244444455888810···1020···2040···40
size111122202020202222222···22···22···2

46 irreducible representations

dim111122222222222
type+++-+++--+-++-
imageC1C2C2C4Q8D4D5D8Q16Dic5D10Dic10D20D40Dic20
kernelC405C4C4⋊Dic5C2×C40C40C20C2×C10C2×C8C10C10C8C2×C4C4C22C2C2
# reps121411222424488

Matrix representation of C405C4 in GL3(𝔽41) generated by

100
03938
02415
,
3200
0401
001
G:=sub<GL(3,GF(41))| [1,0,0,0,39,24,0,38,15],[32,0,0,0,40,0,0,1,1] >;

C405C4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_5C_4
% in TeX

G:=Group("C40:5C4");
// GroupNames label

G:=SmallGroup(160,25);
// by ID

G=gap.SmallGroup(160,25);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,151,579,69,4613]);
// Polycyclic

G:=Group<a,b|a^40=b^4=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C405C4 in TeX

׿
×
𝔽