Copied to
clipboard

G = C406C4order 160 = 25·5

2nd semidirect product of C40 and C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C406C4, C82Dic5, C20.4Q8, C4.4Dic10, C10.2SD16, C22.8D20, (C2×C8).6D5, C53(C4.Q8), (C2×C40).8C2, C20.54(C2×C4), (C2×C10).13D4, (C2×C4).68D10, C4⋊Dic5.2C2, C10.12(C4⋊C4), C4.6(C2×Dic5), C2.2(C40⋊C2), C2.3(C4⋊Dic5), (C2×C20).81C22, SmallGroup(160,24)

Series: Derived Chief Lower central Upper central

C1C20 — C406C4
C1C5C10C2×C10C2×C20C4⋊Dic5 — C406C4
C5C10C20 — C406C4
C1C22C2×C4C2×C8

Generators and relations for C406C4
 G = < a,b | a40=b4=1, bab-1=a19 >

20C4
20C4
10C2×C4
10C2×C4
4Dic5
4Dic5
5C4⋊C4
5C4⋊C4
2C2×Dic5
2C2×Dic5
5C4.Q8

Smallest permutation representation of C406C4
Regular action on 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 107 69 136)(2 86 70 155)(3 105 71 134)(4 84 72 153)(5 103 73 132)(6 82 74 151)(7 101 75 130)(8 120 76 149)(9 99 77 128)(10 118 78 147)(11 97 79 126)(12 116 80 145)(13 95 41 124)(14 114 42 143)(15 93 43 122)(16 112 44 141)(17 91 45 160)(18 110 46 139)(19 89 47 158)(20 108 48 137)(21 87 49 156)(22 106 50 135)(23 85 51 154)(24 104 52 133)(25 83 53 152)(26 102 54 131)(27 81 55 150)(28 100 56 129)(29 119 57 148)(30 98 58 127)(31 117 59 146)(32 96 60 125)(33 115 61 144)(34 94 62 123)(35 113 63 142)(36 92 64 121)(37 111 65 140)(38 90 66 159)(39 109 67 138)(40 88 68 157)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,69,136)(2,86,70,155)(3,105,71,134)(4,84,72,153)(5,103,73,132)(6,82,74,151)(7,101,75,130)(8,120,76,149)(9,99,77,128)(10,118,78,147)(11,97,79,126)(12,116,80,145)(13,95,41,124)(14,114,42,143)(15,93,43,122)(16,112,44,141)(17,91,45,160)(18,110,46,139)(19,89,47,158)(20,108,48,137)(21,87,49,156)(22,106,50,135)(23,85,51,154)(24,104,52,133)(25,83,53,152)(26,102,54,131)(27,81,55,150)(28,100,56,129)(29,119,57,148)(30,98,58,127)(31,117,59,146)(32,96,60,125)(33,115,61,144)(34,94,62,123)(35,113,63,142)(36,92,64,121)(37,111,65,140)(38,90,66,159)(39,109,67,138)(40,88,68,157)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,69,136)(2,86,70,155)(3,105,71,134)(4,84,72,153)(5,103,73,132)(6,82,74,151)(7,101,75,130)(8,120,76,149)(9,99,77,128)(10,118,78,147)(11,97,79,126)(12,116,80,145)(13,95,41,124)(14,114,42,143)(15,93,43,122)(16,112,44,141)(17,91,45,160)(18,110,46,139)(19,89,47,158)(20,108,48,137)(21,87,49,156)(22,106,50,135)(23,85,51,154)(24,104,52,133)(25,83,53,152)(26,102,54,131)(27,81,55,150)(28,100,56,129)(29,119,57,148)(30,98,58,127)(31,117,59,146)(32,96,60,125)(33,115,61,144)(34,94,62,123)(35,113,63,142)(36,92,64,121)(37,111,65,140)(38,90,66,159)(39,109,67,138)(40,88,68,157) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,107,69,136),(2,86,70,155),(3,105,71,134),(4,84,72,153),(5,103,73,132),(6,82,74,151),(7,101,75,130),(8,120,76,149),(9,99,77,128),(10,118,78,147),(11,97,79,126),(12,116,80,145),(13,95,41,124),(14,114,42,143),(15,93,43,122),(16,112,44,141),(17,91,45,160),(18,110,46,139),(19,89,47,158),(20,108,48,137),(21,87,49,156),(22,106,50,135),(23,85,51,154),(24,104,52,133),(25,83,53,152),(26,102,54,131),(27,81,55,150),(28,100,56,129),(29,119,57,148),(30,98,58,127),(31,117,59,146),(32,96,60,125),(33,115,61,144),(34,94,62,123),(35,113,63,142),(36,92,64,121),(37,111,65,140),(38,90,66,159),(39,109,67,138),(40,88,68,157)]])

C406C4 is a maximal subgroup of
C40.6Q8  C40.Q8  D408C4  D82Dic5  C409Q8  C40.13Q8  C4×C40⋊C2  C8⋊Dic10  D409C4  Dic209C4  C23.34D20  C23.10D20  C23.38D20  C23.13D20  D4⋊Dic10  D4.Dic10  D10.16SD16  C406C4⋊C2  Q8⋊Dic10  Q8.2Dic10  D10.11SD16  D101C8.C2  Dic10.3Q8  D203Q8  D20.3Q8  Dic104Q8  C405Q8  C8.8Dic10  D5×C4.Q8  (C8×D5)⋊C4  C404Q8  C4020(C2×C4)  C23.22D20  C4030D4  C23.47D20  C403D4  C40.4D4  D8⋊Dic5  C4012D4  SD16×Dic5  C4014D4  Q16⋊Dic5  C40.36D4  C60.Q8  C12010C4
C406C4 is a maximal quotient of
C406C8  C40.Q8  C20.39C42  C60.Q8  C12010C4

46 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F5A5B8A8B8C8D10A···10F20A···20H40A···40P
order122244444455888810···1020···2040···40
size111122202020202222222···22···22···2

46 irreducible representations

dim1111222222222
type+++-++-+-+
imageC1C2C2C4Q8D4D5SD16Dic5D10Dic10D20C40⋊C2
kernelC406C4C4⋊Dic5C2×C40C40C20C2×C10C2×C8C10C8C2×C4C4C22C2
# reps12141124424416

Matrix representation of C406C4 in GL4(𝔽41) generated by

152600
151500
002314
001112
,
27700
71400
00140
00040
G:=sub<GL(4,GF(41))| [15,15,0,0,26,15,0,0,0,0,23,11,0,0,14,12],[27,7,0,0,7,14,0,0,0,0,1,0,0,0,40,40] >;

C406C4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_6C_4
% in TeX

G:=Group("C40:6C4");
// GroupNames label

G:=SmallGroup(160,24);
// by ID

G=gap.SmallGroup(160,24);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,55,579,69,4613]);
// Polycyclic

G:=Group<a,b|a^40=b^4=1,b*a*b^-1=a^19>;
// generators/relations

Export

Subgroup lattice of C406C4 in TeX

׿
×
𝔽