Extensions 1→N→G→Q→1 with N=C22 and Q=D20

Direct product G=N×Q with N=C22 and Q=D20

Semidirect products G=N:Q with N=C22 and Q=D20
extensionφ:Q→Aut NdρLabelID
C221D20 = C207D4φ: D20/C20C2 ⊆ Aut C2280C2^2:1D20160,151
C222D20 = C22⋊D20φ: D20/D10C2 ⊆ Aut C2240C2^2:2D20160,103

Non-split extensions G=N.Q with N=C22 and Q=D20
extensionφ:Q→Aut NdρLabelID
C22.1D20 = D407C2φ: D20/C20C2 ⊆ Aut C22802C2^2.1D20160,125
C22.2D20 = C23.1D10φ: D20/D10C2 ⊆ Aut C22404C2^2.2D20160,13
C22.3D20 = D207C4φ: D20/D10C2 ⊆ Aut C22404C2^2.3D20160,32
C22.4D20 = C22.D20φ: D20/D10C2 ⊆ Aut C2280C2^2.4D20160,107
C22.5D20 = C8⋊D10φ: D20/D10C2 ⊆ Aut C22404+C2^2.5D20160,129
C22.6D20 = C8.D10φ: D20/D10C2 ⊆ Aut C22804-C2^2.6D20160,130
C22.7D20 = C20.44D4central extension (φ=1)160C2^2.7D20160,23
C22.8D20 = C406C4central extension (φ=1)160C2^2.8D20160,24
C22.9D20 = C405C4central extension (φ=1)160C2^2.9D20160,25
C22.10D20 = D205C4central extension (φ=1)80C2^2.10D20160,28
C22.11D20 = C10.10C42central extension (φ=1)160C2^2.11D20160,38
C22.12D20 = C2×C40⋊C2central extension (φ=1)80C2^2.12D20160,123
C22.13D20 = C2×D40central extension (φ=1)80C2^2.13D20160,124
C22.14D20 = C2×Dic20central extension (φ=1)160C2^2.14D20160,126
C22.15D20 = C2×C4⋊Dic5central extension (φ=1)160C2^2.15D20160,146
C22.16D20 = C2×D10⋊C4central extension (φ=1)80C2^2.16D20160,148