Copied to
clipboard

G = C8.D10order 160 = 25·5

1st non-split extension by C8 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.1D10, C20.13D4, C4.15D20, Dic202C2, M4(2)⋊2D5, C40.1C22, C22.6D20, C20.33C23, D20.8C22, Dic10.8C22, C40⋊C22C2, (C2×C10).6D4, C4○D20.4C2, (C2×C4).16D10, C2.16(C2×D20), C10.14(C2×D4), C51(C8.C22), (C2×Dic10)⋊8C2, (C5×M4(2))⋊2C2, C4.31(C22×D5), (C2×C20).28C22, SmallGroup(160,130)

Series: Derived Chief Lower central Upper central

C1C20 — C8.D10
C1C5C10C20D20C4○D20 — C8.D10
C5C10C20 — C8.D10
C1C2C2×C4M4(2)

Generators and relations for C8.D10
 G = < a,b,c | a8=1, b10=c2=a4, bab-1=a5, cac-1=a-1, cbc-1=b9 >

Subgroups: 208 in 60 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, D5, C10, C10, M4(2), SD16, Q16, C2×Q8, C4○D4, Dic5, C20, D10, C2×C10, C8.C22, C40, Dic10, Dic10, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C40⋊C2, Dic20, C5×M4(2), C2×Dic10, C4○D20, C8.D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C8.C22, D20, C22×D5, C2×D20, C8.D10

Smallest permutation representation of C8.D10
On 80 points
Generators in S80
(1 68 23 45 11 78 33 55)(2 79 24 56 12 69 34 46)(3 70 25 47 13 80 35 57)(4 61 26 58 14 71 36 48)(5 72 27 49 15 62 37 59)(6 63 28 60 16 73 38 50)(7 74 29 51 17 64 39 41)(8 65 30 42 18 75 40 52)(9 76 31 53 19 66 21 43)(10 67 32 44 20 77 22 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 24 31 34)(22 33 32 23)(25 40 35 30)(26 29 36 39)(27 38 37 28)(41 61 51 71)(42 70 52 80)(43 79 53 69)(44 68 54 78)(45 77 55 67)(46 66 56 76)(47 75 57 65)(48 64 58 74)(49 73 59 63)(50 62 60 72)

G:=sub<Sym(80)| (1,68,23,45,11,78,33,55)(2,79,24,56,12,69,34,46)(3,70,25,47,13,80,35,57)(4,61,26,58,14,71,36,48)(5,72,27,49,15,62,37,59)(6,63,28,60,16,73,38,50)(7,74,29,51,17,64,39,41)(8,65,30,42,18,75,40,52)(9,76,31,53,19,66,21,43)(10,67,32,44,20,77,22,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,24,31,34)(22,33,32,23)(25,40,35,30)(26,29,36,39)(27,38,37,28)(41,61,51,71)(42,70,52,80)(43,79,53,69)(44,68,54,78)(45,77,55,67)(46,66,56,76)(47,75,57,65)(48,64,58,74)(49,73,59,63)(50,62,60,72)>;

G:=Group( (1,68,23,45,11,78,33,55)(2,79,24,56,12,69,34,46)(3,70,25,47,13,80,35,57)(4,61,26,58,14,71,36,48)(5,72,27,49,15,62,37,59)(6,63,28,60,16,73,38,50)(7,74,29,51,17,64,39,41)(8,65,30,42,18,75,40,52)(9,76,31,53,19,66,21,43)(10,67,32,44,20,77,22,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,24,31,34)(22,33,32,23)(25,40,35,30)(26,29,36,39)(27,38,37,28)(41,61,51,71)(42,70,52,80)(43,79,53,69)(44,68,54,78)(45,77,55,67)(46,66,56,76)(47,75,57,65)(48,64,58,74)(49,73,59,63)(50,62,60,72) );

G=PermutationGroup([[(1,68,23,45,11,78,33,55),(2,79,24,56,12,69,34,46),(3,70,25,47,13,80,35,57),(4,61,26,58,14,71,36,48),(5,72,27,49,15,62,37,59),(6,63,28,60,16,73,38,50),(7,74,29,51,17,64,39,41),(8,65,30,42,18,75,40,52),(9,76,31,53,19,66,21,43),(10,67,32,44,20,77,22,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,24,31,34),(22,33,32,23),(25,40,35,30),(26,29,36,39),(27,38,37,28),(41,61,51,71),(42,70,52,80),(43,79,53,69),(44,68,54,78),(45,77,55,67),(46,66,56,76),(47,75,57,65),(48,64,58,74),(49,73,59,63),(50,62,60,72)]])

C8.D10 is a maximal subgroup of
D20.1D4  D20.2D4  D20.4D4  D20.7D4  M4(2)⋊D10  D4.9D20  C8.20D20  C8.24D20  C40.9C23  D4.11D20  D4.13D20  SD16⋊D10  D86D10  D5×C8.C22  D20.44D4  Dic20⋊S3  C40.2D6  C60.63D4  C12.D20  C8.D30
C8.D10 is a maximal quotient of
C8⋊Dic10  C42.14D10  C42.16D10  C42.20D10  C8.D20  Dic209C4  C23.34D20  C23.10D20  D20.32D4  C22.D40  Dic1014D4  C22⋊Dic20  Dic10.3Q8  C20⋊SD16  C42.36D10  D204Q8  C4⋊Dic20  Dic104Q8  C23.46D20  C23.47D20  C23.49D20  C402D4  C40.4D4  Dic20⋊S3  C40.2D6  C60.63D4  C12.D20  C8.D30

31 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B8A8B10A10B10C10D20A20B20C20D20E20F40A···40H
order12224444455881010101020202020202040···40
size1122022202020224422442222444···4

31 irreducible representations

dim111111222222244
type+++++++++++++--
imageC1C2C2C2C2C2D4D4D5D10D10D20D20C8.C22C8.D10
kernelC8.D10C40⋊C2Dic20C5×M4(2)C2×Dic10C4○D20C20C2×C10M4(2)C8C2×C4C4C22C5C1
# reps122111112424414

Matrix representation of C8.D10 in GL4(𝔽41) generated by

30292824
011328
10354012
910011
,
1014731
243397
1332827
0131731
,
3992921
1034219
59934
129360
G:=sub<GL(4,GF(41))| [30,0,10,9,29,1,35,10,28,13,40,0,24,28,12,11],[10,24,13,0,14,33,32,13,7,9,8,17,31,7,27,31],[39,10,5,12,9,34,9,9,29,21,9,36,21,9,34,0] >;

C8.D10 in GAP, Magma, Sage, TeX

C_8.D_{10}
% in TeX

G:=Group("C8.D10");
// GroupNames label

G:=SmallGroup(160,130);
// by ID

G=gap.SmallGroup(160,130);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,188,50,579,69,4613]);
// Polycyclic

G:=Group<a,b,c|a^8=1,b^10=c^2=a^4,b*a*b^-1=a^5,c*a*c^-1=a^-1,c*b*c^-1=b^9>;
// generators/relations

׿
×
𝔽