Copied to
clipboard

G = D205C4order 160 = 25·5

2nd semidirect product of D20 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D205C4, C2.2D40, C10.5D8, C20.45D4, C10.3SD16, C22.10D20, (C2×C8)⋊2D5, (C2×C40)⋊2C2, C4.8(C4×D5), C4⋊Dic51C2, C53(D4⋊C4), C20.39(C2×C4), (C2×D20).1C2, (C2×C4).71D10, (C2×C10).15D4, C2.3(C40⋊C2), C4.20(C5⋊D4), (C2×C20).83C22, C2.8(D10⋊C4), C10.18(C22⋊C4), SmallGroup(160,28)

Series: Derived Chief Lower central Upper central

C1C20 — D205C4
C1C5C10C20C2×C20C2×D20 — D205C4
C5C10C20 — D205C4
C1C22C2×C4C2×C8

Generators and relations for D205C4
 G = < a,b,c | a20=b2=c4=1, bab=cac-1=a-1, cbc-1=a3b >

20C2
20C2
10C22
10C22
20C22
20C22
20C4
4D5
4D5
2C8
5D4
5D4
10C2×C4
10C23
10D4
2D10
2D10
4Dic5
4D10
4D10
5C4⋊C4
5C2×D4
2C22×D5
2C2×Dic5
2C40
2D20
5D4⋊C4

Smallest permutation representation of D205C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 72)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 63)(19 62)(20 61)(21 41)(22 60)(23 59)(24 58)(25 57)(26 56)(27 55)(28 54)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)
(1 58 71 30)(2 57 72 29)(3 56 73 28)(4 55 74 27)(5 54 75 26)(6 53 76 25)(7 52 77 24)(8 51 78 23)(9 50 79 22)(10 49 80 21)(11 48 61 40)(12 47 62 39)(13 46 63 38)(14 45 64 37)(15 44 65 36)(16 43 66 35)(17 42 67 34)(18 41 68 33)(19 60 69 32)(20 59 70 31)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,41)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (1,58,71,30)(2,57,72,29)(3,56,73,28)(4,55,74,27)(5,54,75,26)(6,53,76,25)(7,52,77,24)(8,51,78,23)(9,50,79,22)(10,49,80,21)(11,48,61,40)(12,47,62,39)(13,46,63,38)(14,45,64,37)(15,44,65,36)(16,43,66,35)(17,42,67,34)(18,41,68,33)(19,60,69,32)(20,59,70,31)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,41)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (1,58,71,30)(2,57,72,29)(3,56,73,28)(4,55,74,27)(5,54,75,26)(6,53,76,25)(7,52,77,24)(8,51,78,23)(9,50,79,22)(10,49,80,21)(11,48,61,40)(12,47,62,39)(13,46,63,38)(14,45,64,37)(15,44,65,36)(16,43,66,35)(17,42,67,34)(18,41,68,33)(19,60,69,32)(20,59,70,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,72),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,63),(19,62),(20,61),(21,41),(22,60),(23,59),(24,58),(25,57),(26,56),(27,55),(28,54),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42)], [(1,58,71,30),(2,57,72,29),(3,56,73,28),(4,55,74,27),(5,54,75,26),(6,53,76,25),(7,52,77,24),(8,51,78,23),(9,50,79,22),(10,49,80,21),(11,48,61,40),(12,47,62,39),(13,46,63,38),(14,45,64,37),(15,44,65,36),(16,43,66,35),(17,42,67,34),(18,41,68,33),(19,60,69,32),(20,59,70,31)]])

D205C4 is a maximal subgroup of
C4×C40⋊C2  C4×D40  C4.5D40  C42.264D10  C42.16D10  D409C4  C42.19D10  C42.20D10  D20.31D4  D2013D4  D20.32D4  D2014D4  C23.38D20  C22.D40  C23.13D20  Dic54D8  Dic5.5D8  C4⋊C4.D10  D5×D4⋊C4  (D4×D5)⋊C4  D10⋊D8  C5⋊(C82D4)  D4⋊D56C4  Dic57SD16  Q8⋊C4⋊D5  Q8⋊Dic5⋊C2  Q8⋊(C4×D5)  Q82D5⋊C4  D102SD16  C5⋊(C8⋊D4)  Q8⋊D56C4  D203Q8  C4⋊D40  D20.19D4  C42.36D10  D204Q8  D20.3Q8  Dic108D4  D10.17SD16  C4.Q8⋊D5  D20⋊Q8  D20.Q8  D10.13D8  C2.D8⋊D5  D202Q8  D20.2Q8  C23.23D20  C4030D4  C4029D4  C23.48D20  C23.49D20  C402D4  C403D4  Dic5⋊D8  D20⋊D4  Dic55SD16  (C5×D4).D4  D106SD16  D207D4  (C2×Q16)⋊D5  D20.17D4  C6.D40  D6012C4  D608C4
D205C4 is a maximal quotient of
D203C8  C22.2D40  C4.D40  C20.2D8  C40.78D4  D407C4  D40.3C4  D40.4C4  C20.4D8  D408C4  C20.39C42  C6.D40  D6012C4  D608C4

46 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D5A5B8A8B8C8D10A···10F20A···20H40A···40P
order122222444455888810···1020···2040···40
size111120202220202222222···22···22···2

46 irreducible representations

dim1111122222222222
type+++++++++++
imageC1C2C2C2C4D4D4D5D8SD16D10C4×D5C5⋊D4D20C40⋊C2D40
kernelD205C4C4⋊Dic5C2×C40C2×D20D20C20C2×C10C2×C8C10C10C2×C4C4C4C22C2C2
# reps1111411222244488

Matrix representation of D205C4 in GL3(𝔽41) generated by

100
02511
01439
,
100
0211
03739
,
900
01428
01227
G:=sub<GL(3,GF(41))| [1,0,0,0,25,14,0,11,39],[1,0,0,0,2,37,0,11,39],[9,0,0,0,14,12,0,28,27] >;

D205C4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_5C_4
% in TeX

G:=Group("D20:5C4");
// GroupNames label

G:=SmallGroup(160,28);
// by ID

G=gap.SmallGroup(160,28);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,73,79,362,86,4613]);
// Polycyclic

G:=Group<a,b,c|a^20=b^2=c^4=1,b*a*b=c*a*c^-1=a^-1,c*b*c^-1=a^3*b>;
// generators/relations

Export

Subgroup lattice of D205C4 in TeX

׿
×
𝔽