direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C40⋊C2, C8⋊8D10, C4.6D20, C40⋊9C22, C10⋊1SD16, C20.29D4, C20.28C23, D20.6C22, C22.12D20, Dic10⋊3C22, (C2×C8)⋊5D5, (C2×C40)⋊7C2, C5⋊1(C2×SD16), C10.9(C2×D4), (C2×D20).5C2, C2.11(C2×D20), (C2×C10).16D4, (C2×C4).79D10, (C2×Dic10)⋊5C2, C4.26(C22×D5), (C2×C20).88C22, SmallGroup(160,123)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C40⋊C2
G = < a,b,c | a2=b40=c2=1, ab=ba, ac=ca, cbc=b19 >
Subgroups: 280 in 68 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C2×C8, SD16, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×SD16, C40, Dic10, Dic10, D20, D20, C2×Dic5, C2×C20, C22×D5, C40⋊C2, C2×C40, C2×Dic10, C2×D20, C2×C40⋊C2
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C2×SD16, D20, C22×D5, C40⋊C2, C2×D20, C2×C40⋊C2
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 63)(18 64)(19 65)(20 66)(21 67)(22 68)(23 69)(24 70)(25 71)(26 72)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(33 79)(34 80)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 47)(2 66)(3 45)(4 64)(5 43)(6 62)(7 41)(8 60)(9 79)(10 58)(11 77)(12 56)(13 75)(14 54)(15 73)(16 52)(17 71)(18 50)(19 69)(20 48)(21 67)(22 46)(23 65)(24 44)(25 63)(26 42)(27 61)(28 80)(29 59)(30 78)(31 57)(32 76)(33 55)(34 74)(35 53)(36 72)(37 51)(38 70)(39 49)(40 68)
G:=sub<Sym(80)| (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,47)(2,66)(3,45)(4,64)(5,43)(6,62)(7,41)(8,60)(9,79)(10,58)(11,77)(12,56)(13,75)(14,54)(15,73)(16,52)(17,71)(18,50)(19,69)(20,48)(21,67)(22,46)(23,65)(24,44)(25,63)(26,42)(27,61)(28,80)(29,59)(30,78)(31,57)(32,76)(33,55)(34,74)(35,53)(36,72)(37,51)(38,70)(39,49)(40,68)>;
G:=Group( (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,47)(2,66)(3,45)(4,64)(5,43)(6,62)(7,41)(8,60)(9,79)(10,58)(11,77)(12,56)(13,75)(14,54)(15,73)(16,52)(17,71)(18,50)(19,69)(20,48)(21,67)(22,46)(23,65)(24,44)(25,63)(26,42)(27,61)(28,80)(29,59)(30,78)(31,57)(32,76)(33,55)(34,74)(35,53)(36,72)(37,51)(38,70)(39,49)(40,68) );
G=PermutationGroup([[(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,63),(18,64),(19,65),(20,66),(21,67),(22,68),(23,69),(24,70),(25,71),(26,72),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(33,79),(34,80),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,47),(2,66),(3,45),(4,64),(5,43),(6,62),(7,41),(8,60),(9,79),(10,58),(11,77),(12,56),(13,75),(14,54),(15,73),(16,52),(17,71),(18,50),(19,69),(20,48),(21,67),(22,46),(23,65),(24,44),(25,63),(26,42),(27,61),(28,80),(29,59),(30,78),(31,57),(32,76),(33,55),(34,74),(35,53),(36,72),(37,51),(38,70),(39,49),(40,68)]])
C2×C40⋊C2 is a maximal subgroup of
C8⋊5D20 C8.8D20 C42.16D10 C8⋊D20 C8.D20 D20.31D4 D20.32D4 D20⋊14D4 Dic10⋊14D4 Dic10⋊2D4 D20.8D4 D4⋊3D20 D20.D4 Dic10.11D4 Q8⋊2D20 Q8.D20 Dic5⋊SD16 C20⋊SD16 D20.19D4 C42.36D10 Dic10⋊8D4 Dic5⋊8SD16 C8⋊8D20 C8⋊3D20 C40⋊21(C2×C4) C8.24D20 C40⋊30D4 C40⋊2D4 D4.3D20 C40⋊11D4 C40.43D4 C40⋊15D4 C40.37D4 D4.11D20 C2×D5×SD16 D8⋊11D10
C2×C40⋊C2 is a maximal quotient of
C40⋊9Q8 C20.14Q16 C8⋊5D20 C4.5D40 C23.34D20 D20.31D4 C23.38D20 Dic10⋊14D4 C20⋊SD16 D20⋊3Q8 Dic10⋊8D4 Dic10⋊4Q8 C40⋊30D4
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | ··· | 20H | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 20 | 20 | 2 | 2 | 20 | 20 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | SD16 | D10 | D10 | D20 | D20 | C40⋊C2 |
kernel | C2×C40⋊C2 | C40⋊C2 | C2×C40 | C2×Dic10 | C2×D20 | C20 | C2×C10 | C2×C8 | C10 | C8 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 2 | 4 | 4 | 16 |
Matrix representation of C2×C40⋊C2 ►in GL3(𝔽41) generated by
40 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 27 | 28 |
0 | 13 | 18 |
1 | 0 | 0 |
0 | 1 | 34 |
0 | 0 | 40 |
G:=sub<GL(3,GF(41))| [40,0,0,0,1,0,0,0,1],[1,0,0,0,27,13,0,28,18],[1,0,0,0,1,0,0,34,40] >;
C2×C40⋊C2 in GAP, Magma, Sage, TeX
C_2\times C_{40}\rtimes C_2
% in TeX
G:=Group("C2xC40:C2");
// GroupNames label
G:=SmallGroup(160,123);
// by ID
G=gap.SmallGroup(160,123);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,218,50,579,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^2=b^40=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^19>;
// generators/relations