Copied to
clipboard

G = C8⋊D10order 160 = 25·5

1st semidirect product of C8 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C81D10, D402C2, C401C22, C4.14D20, C20.12D4, D204C22, M4(2)⋊1D5, C22.5D20, C20.32C23, Dic104C22, C4○D202C2, (C2×D20)⋊7C2, C40⋊C21C2, C51(C8⋊C22), (C2×C10).5D4, C10.13(C2×D4), C2.15(C2×D20), (C2×C4).15D10, (C5×M4(2))⋊1C2, C4.30(C22×D5), (C2×C20).27C22, SmallGroup(160,129)

Series: Derived Chief Lower central Upper central

C1C20 — C8⋊D10
C1C5C10C20D20C2×D20 — C8⋊D10
C5C10C20 — C8⋊D10
C1C2C2×C4M4(2)

Generators and relations for C8⋊D10
 G = < a,b,c | a8=b10=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 304 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, C8⋊C22, C40, Dic10, C4×D5, D20, D20, D20, C5⋊D4, C2×C20, C22×D5, C40⋊C2, D40, C5×M4(2), C2×D20, C4○D20, C8⋊D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C8⋊C22, D20, C22×D5, C2×D20, C8⋊D10

Smallest permutation representation of C8⋊D10
On 40 points
Generators in S40
(1 21 8 38 20 26 11 33)(2 27 9 34 16 22 12 39)(3 23 10 40 17 28 13 35)(4 29 6 36 18 24 14 31)(5 25 7 32 19 30 15 37)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 17)(12 16)(13 20)(14 19)(15 18)(21 23)(24 30)(25 29)(26 28)(31 32)(33 40)(34 39)(35 38)(36 37)

G:=sub<Sym(40)| (1,21,8,38,20,26,11,33)(2,27,9,34,16,22,12,39)(3,23,10,40,17,28,13,35)(4,29,6,36,18,24,14,31)(5,25,7,32,19,30,15,37), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,10)(2,9)(3,8)(4,7)(5,6)(11,17)(12,16)(13,20)(14,19)(15,18)(21,23)(24,30)(25,29)(26,28)(31,32)(33,40)(34,39)(35,38)(36,37)>;

G:=Group( (1,21,8,38,20,26,11,33)(2,27,9,34,16,22,12,39)(3,23,10,40,17,28,13,35)(4,29,6,36,18,24,14,31)(5,25,7,32,19,30,15,37), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,10)(2,9)(3,8)(4,7)(5,6)(11,17)(12,16)(13,20)(14,19)(15,18)(21,23)(24,30)(25,29)(26,28)(31,32)(33,40)(34,39)(35,38)(36,37) );

G=PermutationGroup([[(1,21,8,38,20,26,11,33),(2,27,9,34,16,22,12,39),(3,23,10,40,17,28,13,35),(4,29,6,36,18,24,14,31),(5,25,7,32,19,30,15,37)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,17),(12,16),(13,20),(14,19),(15,18),(21,23),(24,30),(25,29),(26,28),(31,32),(33,40),(34,39),(35,38),(36,37)]])

C8⋊D10 is a maximal subgroup of
D201D4  D20.3D4  D20.5D4  D20.6D4  D44D20  D4.10D20  C8.21D20  C8.24D20  C40.9C23  D4.11D20  D4.12D20  D5×C8⋊C22  D85D10  D40⋊C22  C40.C23  C401D6  D40⋊S3  D2019D6  D6030C22  C8⋊D30
C8⋊D10 is a maximal quotient of
C8⋊Dic10  C42.16D10  D409C4  C8⋊D20  C42.19D10  C42.20D10  C23.35D20  D20.31D4  D2013D4  D2014D4  C23.38D20  C23.13D20  D203Q8  C4⋊D40  D20.19D4  D20.3Q8  Dic108D4  C20.7Q16  C23.47D20  C23.48D20  C23.49D20  C402D4  C403D4  C401D6  D40⋊S3  D2019D6  D6030C22  C8⋊D30

31 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B8A8B10A10B10C10D20A20B20C20D20E20F40A···40H
order12222244455881010101020202020202040···40
size1122020202220224422442222444···4

31 irreducible representations

dim111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2D4D4D5D10D10D20D20C8⋊C22C8⋊D10
kernelC8⋊D10C40⋊C2D40C5×M4(2)C2×D20C4○D20C20C2×C10M4(2)C8C2×C4C4C22C5C1
# reps122111112424414

Matrix representation of C8⋊D10 in GL4(𝔽41) generated by

931390
1222039
0233210
8192919
,
6600
35100
38173535
316640
,
6600
13500
3962516
249216
G:=sub<GL(4,GF(41))| [9,12,0,8,31,22,23,19,39,0,32,29,0,39,10,19],[6,35,38,31,6,1,17,6,0,0,35,6,0,0,35,40],[6,1,39,24,6,35,6,9,0,0,25,2,0,0,16,16] >;

C8⋊D10 in GAP, Magma, Sage, TeX

C_8\rtimes D_{10}
% in TeX

G:=Group("C8:D10");
// GroupNames label

G:=SmallGroup(160,129);
// by ID

G=gap.SmallGroup(160,129);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,218,188,50,579,69,4613]);
// Polycyclic

G:=Group<a,b,c|a^8=b^10=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽