direct product, metacyclic, supersoluble, monomial
Aliases: D4×C7⋊C3, C28⋊3C6, (C7×D4)⋊C3, C7⋊3(C3×D4), (C2×C14)⋊5C6, C14.7(C2×C6), C4⋊(C2×C7⋊C3), (C4×C7⋊C3)⋊3C2, C22⋊2(C2×C7⋊C3), (C22×C7⋊C3)⋊3C2, C2.2(C22×C7⋊C3), (C2×C7⋊C3).7C22, SmallGroup(168,20)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C2×C7⋊C3 — C22×C7⋊C3 — D4×C7⋊C3 |
Generators and relations for D4×C7⋊C3
G = < a,b,c,d | a4=b2=c7=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Character table of D4×C7⋊C3
class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 7A | 7B | 12A | 12B | 14A | 14B | 14C | 14D | 14E | 14F | 28A | 28B | |
size | 1 | 1 | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 14 | 14 | 14 | 14 | 3 | 3 | 14 | 14 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | 1 | 1 | ζ6 | ζ65 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ8 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | ζ6 | ζ65 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 6 |
ρ9 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | 1 | 1 | ζ65 | ζ6 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 6 |
ρ10 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | ζ65 | ζ6 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 6 |
ρ11 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ15 | 2 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ16 | 3 | 3 | 3 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ17 | 3 | 3 | -3 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | 1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ18 | 3 | 3 | 3 | -3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 1+√-7/2 | 1-√-7/2 | -1+√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ19 | 3 | 3 | -3 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | 1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ20 | 3 | 3 | -3 | 3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ21 | 3 | 3 | -3 | 3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ22 | 3 | 3 | 3 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ23 | 3 | 3 | 3 | -3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 1-√-7/2 | 1+√-7/2 | -1-√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ24 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | 1-√-7 | 1+√-7 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | 1+√-7 | 1-√-7 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 15 8 22)(2 16 9 23)(3 17 10 24)(4 18 11 25)(5 19 12 26)(6 20 13 27)(7 21 14 28)
(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)
G:=sub<Sym(28)| (1,15,8,22)(2,16,9,23)(3,17,10,24)(4,18,11,25)(5,19,12,26)(6,20,13,27)(7,21,14,28), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)>;
G:=Group( (1,15,8,22)(2,16,9,23)(3,17,10,24)(4,18,11,25)(5,19,12,26)(6,20,13,27)(7,21,14,28), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27) );
G=PermutationGroup([[(1,15,8,22),(2,16,9,23),(3,17,10,24),(4,18,11,25),(5,19,12,26),(6,20,13,27),(7,21,14,28)], [(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27)]])
G:=TransitiveGroup(28,22);
D4×C7⋊C3 is a maximal subgroup of
D4⋊F7 D4.F7 D4⋊2F7
Matrix representation of D4×C7⋊C3 ►in GL5(𝔽337)
336 | 88 | 0 | 0 | 0 |
314 | 1 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 336 |
336 | 88 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 336 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 212 | 213 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 124 | 336 | 336 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(337))| [336,314,0,0,0,88,1,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[336,0,0,0,0,88,1,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[1,0,0,0,0,0,1,0,0,0,0,0,212,1,0,0,0,213,0,1,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,124,0,0,0,0,336,1,0,0,0,336,0] >;
D4×C7⋊C3 in GAP, Magma, Sage, TeX
D_4\times C_7\rtimes C_3
% in TeX
G:=Group("D4xC7:C3");
// GroupNames label
G:=SmallGroup(168,20);
// by ID
G=gap.SmallGroup(168,20);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-7,141,314]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^7=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export
Subgroup lattice of D4×C7⋊C3 in TeX
Character table of D4×C7⋊C3 in TeX