Copied to
clipboard

G = D4.F7order 336 = 24·3·7

The non-split extension by D4 of F7 acting via F7/C7⋊C3=C2

metabelian, supersoluble, monomial

Aliases: D4.F7, Dic141C6, C7⋊C82C6, D4.D7⋊C3, C7⋊C242C2, C7⋊C32SD16, C72(C3×SD16), C4.F71C2, C4.2(C2×F7), C28.2(C2×C6), (C7×D4).1C6, C14.8(C3×D4), C2.5(Dic7⋊C6), (D4×C7⋊C3).1C2, (C2×C7⋊C3).8D4, (C4×C7⋊C3).2C22, SmallGroup(336,19)

Series: Derived Chief Lower central Upper central

C1C28 — D4.F7
C1C7C14C28C4×C7⋊C3C4.F7 — D4.F7
C7C14C28 — D4.F7
C1C2C4D4

Generators and relations for D4.F7
 G = < a,b,c,d | a4=b2=c7=1, d6=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c5 >

4C2
7C3
2C22
14C4
7C6
28C6
4C14
7Q8
7C8
7C12
14C2×C6
14C12
2C2×C14
2Dic7
4C2×C7⋊C3
7SD16
7C3×Q8
7C3×D4
7C24
2C22×C7⋊C3
2C7⋊C12
7C3×SD16

Character table of D4.F7

 class 12A2B3A3B4A4B6A6B6C6D78A8B12A12B12C12D14A14B14C24A24B24C24D28
 size 114772287728286141414142828612121414141412
ρ111111111111111111111111111    trivial
ρ211-1111-111-1-111111-1-11-1-111111    linear of order 2
ρ311-1111111-1-11-1-111111-1-1-1-1-1-11    linear of order 2
ρ4111111-111111-1-111-1-1111-1-1-1-11    linear of order 2
ρ5111ζ32ζ31-1ζ3ζ32ζ32ζ31-1-1ζ32ζ3ζ65ζ6111ζ6ζ6ζ65ζ651    linear of order 6
ρ611-1ζ32ζ31-1ζ3ζ32ζ6ζ65111ζ32ζ3ζ65ζ61-1-1ζ32ζ32ζ3ζ31    linear of order 6
ρ711-1ζ3ζ321-1ζ32ζ3ζ65ζ6111ζ3ζ32ζ6ζ651-1-1ζ3ζ3ζ32ζ321    linear of order 6
ρ8111ζ3ζ321-1ζ32ζ3ζ3ζ321-1-1ζ3ζ32ζ6ζ65111ζ65ζ65ζ6ζ61    linear of order 6
ρ911-1ζ32ζ311ζ3ζ32ζ6ζ651-1-1ζ32ζ3ζ3ζ321-1-1ζ6ζ6ζ65ζ651    linear of order 6
ρ10111ζ32ζ311ζ3ζ32ζ32ζ3111ζ32ζ3ζ3ζ32111ζ32ζ32ζ3ζ31    linear of order 3
ρ1111-1ζ3ζ3211ζ32ζ3ζ65ζ61-1-1ζ3ζ32ζ32ζ31-1-1ζ65ζ65ζ6ζ61    linear of order 6
ρ12111ζ3ζ3211ζ32ζ3ζ3ζ32111ζ3ζ32ζ32ζ3111ζ3ζ3ζ32ζ321    linear of order 3
ρ1322022-202200200-2-2002000000-2    orthogonal lifted from D4
ρ14220-1+-3-1--3-20-1--3-1+-3002001--31+-3002000000-2    complex lifted from C3×D4
ρ15220-1--3-1+-3-20-1+-3-1--3002001+-31--3002000000-2    complex lifted from C3×D4
ρ162-202200-2-2002-2--20000-200--2-2--2-20    complex lifted from SD16
ρ172-202200-2-2002--2-20000-200-2--2-2--20    complex lifted from SD16
ρ182-20-1+-3-1--3001+-31--3002-2--20000-200ζ87ζ385ζ3ζ83ζ38ζ3ζ87ζ3285ζ32ζ83ζ328ζ320    complex lifted from C3×SD16
ρ192-20-1--3-1+-3001--31+-3002--2-20000-200ζ83ζ328ζ32ζ87ζ3285ζ32ζ83ζ38ζ3ζ87ζ385ζ30    complex lifted from C3×SD16
ρ202-20-1+-3-1--3001+-31--3002--2-20000-200ζ83ζ38ζ3ζ87ζ385ζ3ζ83ζ328ζ32ζ87ζ3285ζ320    complex lifted from C3×SD16
ρ212-20-1--3-1+-3001--31+-3002-2--20000-200ζ87ζ3285ζ32ζ83ζ328ζ32ζ87ζ385ζ3ζ83ζ38ζ30    complex lifted from C3×SD16
ρ2266600600000-1000000-1-1-10000-1    orthogonal lifted from F7
ρ2366-600600000-1000000-1110000-1    orthogonal lifted from C2×F7
ρ2466000-600000-1000000-1--7-700001    complex lifted from Dic7⋊C6
ρ2566000-600000-1000000-1-7--700001    complex lifted from Dic7⋊C6
ρ2612-12000000000-200000020000000    symplectic faithful, Schur index 2

Smallest permutation representation of D4.F7
On 56 points
Generators in S56
(1 5 3 7)(2 8 4 6)(9 55 15 49)(10 50 16 56)(11 45 17 51)(12 52 18 46)(13 47 19 53)(14 54 20 48)(21 36 27 42)(22 43 28 37)(23 38 29 44)(24 33 30 39)(25 40 31 34)(26 35 32 41)
(1 7)(2 4)(3 5)(9 55)(11 45)(13 47)(15 49)(17 51)(19 53)(21 27)(22 37)(23 29)(24 39)(25 31)(26 41)(28 43)(30 33)(32 35)(46 52)(48 54)(50 56)
(1 49 45 28 53 32 24)(2 21 29 50 25 54 46)(3 55 51 22 47 26 30)(4 27 23 56 31 48 52)(5 9 17 37 13 41 33)(6 42 38 10 34 14 18)(7 15 11 43 19 35 39)(8 36 44 16 40 20 12)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56)

G:=sub<Sym(56)| (1,5,3,7)(2,8,4,6)(9,55,15,49)(10,50,16,56)(11,45,17,51)(12,52,18,46)(13,47,19,53)(14,54,20,48)(21,36,27,42)(22,43,28,37)(23,38,29,44)(24,33,30,39)(25,40,31,34)(26,35,32,41), (1,7)(2,4)(3,5)(9,55)(11,45)(13,47)(15,49)(17,51)(19,53)(21,27)(22,37)(23,29)(24,39)(25,31)(26,41)(28,43)(30,33)(32,35)(46,52)(48,54)(50,56), (1,49,45,28,53,32,24)(2,21,29,50,25,54,46)(3,55,51,22,47,26,30)(4,27,23,56,31,48,52)(5,9,17,37,13,41,33)(6,42,38,10,34,14,18)(7,15,11,43,19,35,39)(8,36,44,16,40,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56)>;

G:=Group( (1,5,3,7)(2,8,4,6)(9,55,15,49)(10,50,16,56)(11,45,17,51)(12,52,18,46)(13,47,19,53)(14,54,20,48)(21,36,27,42)(22,43,28,37)(23,38,29,44)(24,33,30,39)(25,40,31,34)(26,35,32,41), (1,7)(2,4)(3,5)(9,55)(11,45)(13,47)(15,49)(17,51)(19,53)(21,27)(22,37)(23,29)(24,39)(25,31)(26,41)(28,43)(30,33)(32,35)(46,52)(48,54)(50,56), (1,49,45,28,53,32,24)(2,21,29,50,25,54,46)(3,55,51,22,47,26,30)(4,27,23,56,31,48,52)(5,9,17,37,13,41,33)(6,42,38,10,34,14,18)(7,15,11,43,19,35,39)(8,36,44,16,40,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56) );

G=PermutationGroup([[(1,5,3,7),(2,8,4,6),(9,55,15,49),(10,50,16,56),(11,45,17,51),(12,52,18,46),(13,47,19,53),(14,54,20,48),(21,36,27,42),(22,43,28,37),(23,38,29,44),(24,33,30,39),(25,40,31,34),(26,35,32,41)], [(1,7),(2,4),(3,5),(9,55),(11,45),(13,47),(15,49),(17,51),(19,53),(21,27),(22,37),(23,29),(24,39),(25,31),(26,41),(28,43),(30,33),(32,35),(46,52),(48,54),(50,56)], [(1,49,45,28,53,32,24),(2,21,29,50,25,54,46),(3,55,51,22,47,26,30),(4,27,23,56,31,48,52),(5,9,17,37,13,41,33),(6,42,38,10,34,14,18),(7,15,11,43,19,35,39),(8,36,44,16,40,20,12)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56)]])

Matrix representation of D4.F7 in GL8(𝔽337)

01000000
3360000000
0033600000
0003360000
0000336000
0000033600
0000003360
0000000336
,
01000000
10000000
0033600000
0003360000
0000336000
00000100
00000010
00000001
,
10000000
01000000
003361241000
0001241000
003361251000
0000033610
0000033601
000001241213
,
26275000000
7575000000
00000010
000001251213
000001213336
00010000
001251213000
001213336000

G:=sub<GL(8,GF(337))| [0,336,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,0,336,0,0,0,0,0,124,124,125,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,336,336,124,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,213],[262,75,0,0,0,0,0,0,75,75,0,0,0,0,0,0,0,0,0,0,0,0,125,1,0,0,0,0,0,1,1,213,0,0,0,0,0,0,213,336,0,0,0,125,1,0,0,0,0,0,1,1,213,0,0,0,0,0,0,213,336,0,0,0] >;

D4.F7 in GAP, Magma, Sage, TeX

D_4.F_7
% in TeX

G:=Group("D4.F7");
// GroupNames label

G:=SmallGroup(336,19);
// by ID

G=gap.SmallGroup(336,19);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,144,169,867,441,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^7=1,d^6=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of D4.F7 in TeX
Character table of D4.F7 in TeX

׿
×
𝔽