metabelian, supersoluble, monomial
Aliases: D4.F7, Dic14⋊1C6, C7⋊C8⋊2C6, D4.D7⋊C3, C7⋊C24⋊2C2, C7⋊C3⋊2SD16, C7⋊2(C3×SD16), C4.F7⋊1C2, C4.2(C2×F7), C28.2(C2×C6), (C7×D4).1C6, C14.8(C3×D4), C2.5(Dic7⋊C6), (D4×C7⋊C3).1C2, (C2×C7⋊C3).8D4, (C4×C7⋊C3).2C22, SmallGroup(336,19)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4.F7
G = < a,b,c,d | a4=b2=c7=1, d6=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c5 >
Character table of D4.F7
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 7 | 8A | 8B | 12A | 12B | 12C | 12D | 14A | 14B | 14C | 24A | 24B | 24C | 24D | 28 | |
size | 1 | 1 | 4 | 7 | 7 | 2 | 28 | 7 | 7 | 28 | 28 | 6 | 14 | 14 | 14 | 14 | 28 | 28 | 6 | 12 | 12 | 14 | 14 | 14 | 14 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | ζ6 | ζ6 | ζ65 | ζ65 | 1 | linear of order 6 |
ρ6 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | linear of order 6 |
ρ7 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | linear of order 6 |
ρ8 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | ζ65 | ζ65 | ζ6 | ζ6 | 1 | linear of order 6 |
ρ9 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | -1 | -1 | ζ6 | ζ6 | ζ65 | ζ65 | 1 | linear of order 6 |
ρ10 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | linear of order 3 |
ρ11 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | -1 | -1 | ζ65 | ζ65 | ζ6 | ζ6 | 1 | linear of order 6 |
ρ12 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | linear of order 3 |
ρ13 | 2 | 2 | 0 | 2 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | -2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 2 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | complex lifted from C3×D4 |
ρ15 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | -2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 2 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | complex lifted from C3×D4 |
ρ16 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | complex lifted from SD16 |
ρ17 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | complex lifted from SD16 |
ρ18 | 2 | -2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | ζ87ζ3+ζ85ζ3 | ζ83ζ3+ζ8ζ3 | ζ87ζ32+ζ85ζ32 | ζ83ζ32+ζ8ζ32 | 0 | complex lifted from C3×SD16 |
ρ19 | 2 | -2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | ζ83ζ32+ζ8ζ32 | ζ87ζ32+ζ85ζ32 | ζ83ζ3+ζ8ζ3 | ζ87ζ3+ζ85ζ3 | 0 | complex lifted from C3×SD16 |
ρ20 | 2 | -2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | ζ83ζ3+ζ8ζ3 | ζ87ζ3+ζ85ζ3 | ζ83ζ32+ζ8ζ32 | ζ87ζ32+ζ85ζ32 | 0 | complex lifted from C3×SD16 |
ρ21 | 2 | -2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | ζ87ζ32+ζ85ζ32 | ζ83ζ32+ζ8ζ32 | ζ87ζ3+ζ85ζ3 | ζ83ζ3+ζ8ζ3 | 0 | complex lifted from C3×SD16 |
ρ22 | 6 | 6 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from F7 |
ρ23 | 6 | 6 | -6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from C2×F7 |
ρ24 | 6 | 6 | 0 | 0 | 0 | -6 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -√-7 | √-7 | 0 | 0 | 0 | 0 | 1 | complex lifted from Dic7⋊C6 |
ρ25 | 6 | 6 | 0 | 0 | 0 | -6 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | √-7 | -√-7 | 0 | 0 | 0 | 0 | 1 | complex lifted from Dic7⋊C6 |
ρ26 | 12 | -12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 5 3 7)(2 8 4 6)(9 55 15 49)(10 50 16 56)(11 45 17 51)(12 52 18 46)(13 47 19 53)(14 54 20 48)(21 36 27 42)(22 43 28 37)(23 38 29 44)(24 33 30 39)(25 40 31 34)(26 35 32 41)
(1 7)(2 4)(3 5)(9 55)(11 45)(13 47)(15 49)(17 51)(19 53)(21 27)(22 37)(23 29)(24 39)(25 31)(26 41)(28 43)(30 33)(32 35)(46 52)(48 54)(50 56)
(1 49 45 28 53 32 24)(2 21 29 50 25 54 46)(3 55 51 22 47 26 30)(4 27 23 56 31 48 52)(5 9 17 37 13 41 33)(6 42 38 10 34 14 18)(7 15 11 43 19 35 39)(8 36 44 16 40 20 12)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56)
G:=sub<Sym(56)| (1,5,3,7)(2,8,4,6)(9,55,15,49)(10,50,16,56)(11,45,17,51)(12,52,18,46)(13,47,19,53)(14,54,20,48)(21,36,27,42)(22,43,28,37)(23,38,29,44)(24,33,30,39)(25,40,31,34)(26,35,32,41), (1,7)(2,4)(3,5)(9,55)(11,45)(13,47)(15,49)(17,51)(19,53)(21,27)(22,37)(23,29)(24,39)(25,31)(26,41)(28,43)(30,33)(32,35)(46,52)(48,54)(50,56), (1,49,45,28,53,32,24)(2,21,29,50,25,54,46)(3,55,51,22,47,26,30)(4,27,23,56,31,48,52)(5,9,17,37,13,41,33)(6,42,38,10,34,14,18)(7,15,11,43,19,35,39)(8,36,44,16,40,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56)>;
G:=Group( (1,5,3,7)(2,8,4,6)(9,55,15,49)(10,50,16,56)(11,45,17,51)(12,52,18,46)(13,47,19,53)(14,54,20,48)(21,36,27,42)(22,43,28,37)(23,38,29,44)(24,33,30,39)(25,40,31,34)(26,35,32,41), (1,7)(2,4)(3,5)(9,55)(11,45)(13,47)(15,49)(17,51)(19,53)(21,27)(22,37)(23,29)(24,39)(25,31)(26,41)(28,43)(30,33)(32,35)(46,52)(48,54)(50,56), (1,49,45,28,53,32,24)(2,21,29,50,25,54,46)(3,55,51,22,47,26,30)(4,27,23,56,31,48,52)(5,9,17,37,13,41,33)(6,42,38,10,34,14,18)(7,15,11,43,19,35,39)(8,36,44,16,40,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56) );
G=PermutationGroup([[(1,5,3,7),(2,8,4,6),(9,55,15,49),(10,50,16,56),(11,45,17,51),(12,52,18,46),(13,47,19,53),(14,54,20,48),(21,36,27,42),(22,43,28,37),(23,38,29,44),(24,33,30,39),(25,40,31,34),(26,35,32,41)], [(1,7),(2,4),(3,5),(9,55),(11,45),(13,47),(15,49),(17,51),(19,53),(21,27),(22,37),(23,29),(24,39),(25,31),(26,41),(28,43),(30,33),(32,35),(46,52),(48,54),(50,56)], [(1,49,45,28,53,32,24),(2,21,29,50,25,54,46),(3,55,51,22,47,26,30),(4,27,23,56,31,48,52),(5,9,17,37,13,41,33),(6,42,38,10,34,14,18),(7,15,11,43,19,35,39),(8,36,44,16,40,20,12)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56)]])
Matrix representation of D4.F7 ►in GL8(𝔽337)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
336 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 336 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 124 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 124 | 1 | 0 | 0 | 0 |
0 | 0 | 336 | 125 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 124 | 1 | 213 |
262 | 75 | 0 | 0 | 0 | 0 | 0 | 0 |
75 | 75 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 125 | 1 | 213 |
0 | 0 | 0 | 0 | 0 | 1 | 213 | 336 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 125 | 1 | 213 | 0 | 0 | 0 |
0 | 0 | 1 | 213 | 336 | 0 | 0 | 0 |
G:=sub<GL(8,GF(337))| [0,336,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,0,336,0,0,0,0,0,124,124,125,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,336,336,124,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,213],[262,75,0,0,0,0,0,0,75,75,0,0,0,0,0,0,0,0,0,0,0,0,125,1,0,0,0,0,0,1,1,213,0,0,0,0,0,0,213,336,0,0,0,125,1,0,0,0,0,0,1,1,213,0,0,0,0,0,0,213,336,0,0,0] >;
D4.F7 in GAP, Magma, Sage, TeX
D_4.F_7
% in TeX
G:=Group("D4.F7");
// GroupNames label
G:=SmallGroup(336,19);
// by ID
G=gap.SmallGroup(336,19);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-2,-7,144,169,867,441,69,10373,1745]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^7=1,d^6=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^5>;
// generators/relations
Export
Subgroup lattice of D4.F7 in TeX
Character table of D4.F7 in TeX