Copied to
clipboard

G = D4⋊F7order 336 = 24·3·7

The semidirect product of D4 and F7 acting via F7/C7⋊C3=C2

metabelian, supersoluble, monomial

Aliases: D4⋊F7, D281C6, D4⋊D7⋊C3, C7⋊C32D8, C7⋊C81C6, C72(C3×D8), C7⋊C241C2, C4⋊F71C2, (C7×D4)⋊1C6, C4.1(C2×F7), C28.1(C2×C6), C14.7(C3×D4), C2.4(Dic7⋊C6), (D4×C7⋊C3)⋊1C2, (C2×C7⋊C3).7D4, (C4×C7⋊C3).1C22, SmallGroup(336,18)

Series: Derived Chief Lower central Upper central

C1C28 — D4⋊F7
C1C7C14C28C4×C7⋊C3C4⋊F7 — D4⋊F7
C7C14C28 — D4⋊F7
C1C2C4D4

Generators and relations for D4⋊F7
 G = < a,b,c,d | a4=b2=c7=d6=1, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c5 >

4C2
28C2
7C3
2C22
14C22
7C6
28C6
28C6
4C14
4D7
7D4
7C8
7C12
14C2×C6
14C2×C6
2D14
2C2×C14
4C2×C7⋊C3
4F7
7D8
7C3×D4
7C3×D4
7C24
2C2×F7
2C22×C7⋊C3
7C3×D8

Character table of D4⋊F7

 class 12A2B2C3A3B46A6B6C6D6E6F78A8B12A12B14A14B14C24A24B24C24D28
 size 114287727728282828614141414612121414141412
ρ111111111111111111111111111    trivial
ρ211-1-111111-1-1-1-1111111-1-111111    linear of order 2
ρ3111-111111-111-11-1-111111-1-1-1-11    linear of order 2
ρ411-11111111-1-111-1-1111-1-1-1-1-1-11    linear of order 2
ρ511-11ζ32ζ31ζ3ζ32ζ32ζ6ζ65ζ31-1-1ζ32ζ31-1-1ζ65ζ65ζ6ζ61    linear of order 6
ρ611-11ζ3ζ321ζ32ζ3ζ3ζ65ζ6ζ321-1-1ζ3ζ321-1-1ζ6ζ6ζ65ζ651    linear of order 6
ρ71111ζ32ζ31ζ3ζ32ζ32ζ32ζ3ζ3111ζ32ζ3111ζ3ζ3ζ32ζ321    linear of order 3
ρ8111-1ζ3ζ321ζ32ζ3ζ65ζ3ζ32ζ61-1-1ζ3ζ32111ζ6ζ6ζ65ζ651    linear of order 6
ρ9111-1ζ32ζ31ζ3ζ32ζ6ζ32ζ3ζ651-1-1ζ32ζ3111ζ65ζ65ζ6ζ61    linear of order 6
ρ101111ζ3ζ321ζ32ζ3ζ3ζ3ζ32ζ32111ζ3ζ32111ζ32ζ32ζ3ζ31    linear of order 3
ρ1111-1-1ζ32ζ31ζ3ζ32ζ6ζ6ζ65ζ65111ζ32ζ31-1-1ζ3ζ3ζ32ζ321    linear of order 6
ρ1211-1-1ζ3ζ321ζ32ζ3ζ65ζ65ζ6ζ6111ζ3ζ321-1-1ζ32ζ32ζ3ζ31    linear of order 6
ρ13220022-2220000200-2-22000000-2    orthogonal lifted from D4
ρ142-200220-2-200002-2200-2002-22-20    orthogonal lifted from D8
ρ152-200220-2-2000022-200-200-22-220    orthogonal lifted from D8
ρ162200-1--3-1+-3-2-1+-3-1--300002001+-31--32000000-2    complex lifted from C3×D4
ρ172200-1+-3-1--3-2-1--3-1+-300002001--31+-32000000-2    complex lifted from C3×D4
ρ182-200-1--3-1+-301--31+-3000022-200-200ζ83ζ38ζ3ζ87ζ385ζ3ζ83ζ328ζ32ζ87ζ3285ζ320    complex lifted from C3×D8
ρ192-200-1+-3-1--301+-31--3000022-200-200ζ83ζ328ζ32ζ87ζ3285ζ32ζ83ζ38ζ3ζ87ζ385ζ30    complex lifted from C3×D8
ρ202-200-1+-3-1--301+-31--300002-2200-200ζ87ζ3285ζ32ζ83ζ328ζ32ζ87ζ385ζ3ζ83ζ38ζ30    complex lifted from C3×D8
ρ212-200-1--3-1+-301--31+-300002-2200-200ζ87ζ385ζ3ζ83ζ38ζ3ζ87ζ3285ζ32ζ83ζ328ζ320    complex lifted from C3×D8
ρ2266-60006000000-10000-1110000-1    orthogonal lifted from C2×F7
ρ236660006000000-10000-1-1-10000-1    orthogonal lifted from F7
ρ24660000-6000000-10000-1-7--700001    complex lifted from Dic7⋊C6
ρ25660000-6000000-10000-1--7-700001    complex lifted from Dic7⋊C6
ρ2612-1200000000000-2000020000000    orthogonal faithful

Smallest permutation representation of D4⋊F7
On 56 points
Generators in S56
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 34)(2 30 3 33 5 32)(4 29 7 31 6 35)(8 41)(9 37 10 40 12 39)(11 36 14 38 13 42)(15 48)(16 44 17 47 19 46)(18 43 21 45 20 49)(22 55)(23 51 24 54 26 53)(25 50 28 52 27 56)

G:=sub<Sym(56)| (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,34)(2,30,3,33,5,32)(4,29,7,31,6,35)(8,41)(9,37,10,40,12,39)(11,36,14,38,13,42)(15,48)(16,44,17,47,19,46)(18,43,21,45,20,49)(22,55)(23,51,24,54,26,53)(25,50,28,52,27,56)>;

G:=Group( (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,34)(2,30,3,33,5,32)(4,29,7,31,6,35)(8,41)(9,37,10,40,12,39)(11,36,14,38,13,42)(15,48)(16,44,17,47,19,46)(18,43,21,45,20,49)(22,55)(23,51,24,54,26,53)(25,50,28,52,27,56) );

G=PermutationGroup([[(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,34),(2,30,3,33,5,32),(4,29,7,31,6,35),(8,41),(9,37,10,40,12,39),(11,36,14,38,13,42),(15,48),(16,44,17,47,19,46),(18,43,21,45,20,49),(22,55),(23,51,24,54,26,53),(25,50,28,52,27,56)]])

Matrix representation of D4⋊F7 in GL8(𝔽337)

01000000
3360000000
0033600000
0003360000
0000336000
0000033600
0000003360
0000000336
,
01000000
10000000
0033600000
0003360000
0000336000
0064325261100
0064325261010
0064325261001
,
10000000
01000000
003362121000
0002121000
003362131000
0026217311010
0026217311001
00243712851125124
,
21316000000
316316000000
0000033601
00165285120123336336
00120146262112131
00792591802600
00792601802600
002922603052600

G:=sub<GL(8,GF(337))| [0,336,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,336,0,0,64,64,64,0,0,0,336,0,325,325,325,0,0,0,0,336,261,261,261,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,0,336,26,26,243,0,0,212,212,213,217,217,71,0,0,1,1,1,311,311,285,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,125,0,0,0,0,0,0,1,124],[21,316,0,0,0,0,0,0,316,316,0,0,0,0,0,0,0,0,0,165,120,79,79,292,0,0,0,285,146,259,260,260,0,0,0,120,26,180,180,305,0,0,336,123,211,26,26,26,0,0,0,336,213,0,0,0,0,0,1,336,1,0,0,0] >;

D4⋊F7 in GAP, Magma, Sage, TeX

D_4\rtimes F_7
% in TeX

G:=Group("D4:F7");
// GroupNames label

G:=SmallGroup(336,18);
// by ID

G=gap.SmallGroup(336,18);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,169,867,441,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^7=d^6=1,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of D4⋊F7 in TeX
Character table of D4⋊F7 in TeX

׿
×
𝔽