Extensions 1→N→G→Q→1 with N=C22 and Q=D22

Direct product G=N×Q with N=C22 and Q=D22

Semidirect products G=N:Q with N=C22 and Q=D22
extensionφ:Q→Aut NdρLabelID
C221D22 = D4×D11φ: D22/D11C2 ⊆ Aut C22444+C2^2:1D22176,31
C222D22 = C2×C11⋊D4φ: D22/C22C2 ⊆ Aut C2288C2^2:2D22176,36

Non-split extensions G=N.Q with N=C22 and Q=D22
extensionφ:Q→Aut NdρLabelID
C22.1D22 = D42D11φ: D22/D11C2 ⊆ Aut C22884-C2^2.1D22176,32
C22.2D22 = D445C2φ: D22/C22C2 ⊆ Aut C22882C2^2.2D22176,30
C22.3D22 = C4×Dic11central extension (φ=1)176C2^2.3D22176,10
C22.4D22 = Dic11⋊C4central extension (φ=1)176C2^2.4D22176,11
C22.5D22 = C44⋊C4central extension (φ=1)176C2^2.5D22176,12
C22.6D22 = D22⋊C4central extension (φ=1)88C2^2.6D22176,13
C22.7D22 = C23.D11central extension (φ=1)88C2^2.7D22176,18
C22.8D22 = C2×Dic22central extension (φ=1)176C2^2.8D22176,27
C22.9D22 = C2×C4×D11central extension (φ=1)88C2^2.9D22176,28
C22.10D22 = C2×D44central extension (φ=1)88C2^2.10D22176,29
C22.11D22 = C22×Dic11central extension (φ=1)176C2^2.11D22176,35