Copied to
clipboard

G = D4×D11order 176 = 24·11

Direct product of D4 and D11

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D11, C41D22, C44⋊C22, D443C2, C221D22, D222C22, C22.5C23, Dic111C22, C112(C2×D4), (C2×C22)⋊C22, (C4×D11)⋊1C2, (D4×C11)⋊2C2, C11⋊D41C2, (C22×D11)⋊2C2, C2.6(C22×D11), SmallGroup(176,31)

Series: Derived Chief Lower central Upper central

C1C22 — D4×D11
C1C11C22D22C22×D11 — D4×D11
C11C22 — D4×D11
C1C2D4

Generators and relations for D4×D11
 G = < a,b,c,d | a4=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 320 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, D4, D4, C23, C11, C2×D4, D11, D11, C22, C22, Dic11, C44, D22, D22, D22, C2×C22, C4×D11, D44, C11⋊D4, D4×C11, C22×D11, D4×D11
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, D22, C22×D11, D4×D11

Smallest permutation representation of D4×D11
On 44 points
Generators in S44
(1 32 21 43)(2 33 22 44)(3 23 12 34)(4 24 13 35)(5 25 14 36)(6 26 15 37)(7 27 16 38)(8 28 17 39)(9 29 18 40)(10 30 19 41)(11 31 20 42)
(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 22)(11 21)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 44)(31 43)(32 42)(33 41)

G:=sub<Sym(44)| (1,32,21,43)(2,33,22,44)(3,23,12,34)(4,24,13,35)(5,25,14,36)(6,26,15,37)(7,27,16,38)(8,28,17,39)(9,29,18,40)(10,30,19,41)(11,31,20,42), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)>;

G:=Group( (1,32,21,43)(2,33,22,44)(3,23,12,34)(4,24,13,35)(5,25,14,36)(6,26,15,37)(7,27,16,38)(8,28,17,39)(9,29,18,40)(10,30,19,41)(11,31,20,42), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41) );

G=PermutationGroup([[(1,32,21,43),(2,33,22,44),(3,23,12,34),(4,24,13,35),(5,25,14,36),(6,26,15,37),(7,27,16,38),(8,28,17,39),(9,29,18,40),(10,30,19,41),(11,31,20,42)], [(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,22),(11,21),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,44),(31,43),(32,42),(33,41)]])

D4×D11 is a maximal subgroup of
D4⋊D22  D88⋊C2  D46D22  D48D22
D4×D11 is a maximal quotient of
C22⋊Dic22  Dic114D4  C22⋊D44  D22.D4  D22⋊D4  Dic11.D4  C44⋊Q8  D44⋊C4  D22.5D4  C42D44  D22⋊Q8  D4⋊D22  D83D11  D88⋊C2  D4.D22  Q8.D22  Q16⋊D11  D885C2  C23⋊D22  C442D4  Dic11⋊D4  C44⋊D4

35 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B11A···11E22A···22E22F···22O44A···44E
order122222224411···1122···2222···2244···44
size1122111122222222···22···24···44···4

35 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D11D22D22D4×D11
kernelD4×D11C4×D11D44C11⋊D4D4×C11C22×D11D11D4C4C22C1
# reps111212255105

Matrix representation of D4×D11 in GL4(𝔽89) generated by

88000
08800
00534
005436
,
1000
0100
0010
001888
,
7100
88000
0010
0001
,
274100
306200
00880
00088
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,53,54,0,0,4,36],[1,0,0,0,0,1,0,0,0,0,1,18,0,0,0,88],[7,88,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[27,30,0,0,41,62,0,0,0,0,88,0,0,0,0,88] >;

D4×D11 in GAP, Magma, Sage, TeX

D_4\times D_{11}
% in TeX

G:=Group("D4xD11");
// GroupNames label

G:=SmallGroup(176,31);
// by ID

G=gap.SmallGroup(176,31);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,97,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽