non-abelian, soluble, monomial
Aliases: 2+ (1+4).3C6, C4○D4⋊2A4, (C22×C4)⋊3A4, Q8.2(C2×A4), C23⋊A4⋊4C2, C23.7(C2×A4), C4.2(C22⋊A4), C2.C25⋊2C3, C2.5(C2×C22⋊A4), SmallGroup(192,1509)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C23 — 2+ (1+4) — C23⋊A4 — 2+ (1+4).3C6 |
2+ (1+4) — 2+ (1+4).3C6 |
Subgroups: 567 in 165 conjugacy classes, 17 normal (7 characteristic)
C1, C2, C2 [×5], C3, C4, C4 [×5], C22 [×12], C6, C2×C4 [×20], D4 [×20], Q8 [×2], Q8 [×6], C23 [×3], C23 [×4], C12, A4 [×3], C22×C4 [×3], C22×C4 [×4], C2×D4 [×15], C2×Q8 [×5], C4○D4 [×2], C4○D4 [×26], SL2(𝔽3) [×2], C2×A4 [×3], C2×C4○D4 [×5], 2+ (1+4), 2+ (1+4) [×3], 2- (1+4) [×2], C4×A4 [×3], C4.A4 [×2], C2.C25, C23⋊A4, 2+ (1+4).3C6
Quotients:
C1, C2, C3, C6, A4 [×5], C2×A4 [×5], C22⋊A4, C2×C22⋊A4, 2+ (1+4).3C6
Generators and relations
G = < a,b,c,d,e | a4=b2=d2=1, c2=e6=a2, bab=a-1, ac=ca, ad=da, eae-1=a2bc, bc=cb, bd=db, ebe-1=a2bcd, dcd=a2c, ece-1=a-1d, ede-1=a-1bd >
(1 6 3 12)(2 15 4 9)(5 13 11 7)(8 16 14 10)
(1 12)(2 9)(3 6)(4 15)(5 13)(7 11)(8 16)(10 14)
(1 16 3 10)(2 13 4 7)(5 15 11 9)(6 14 12 8)
(5 11)(7 13)(8 14)(10 16)
(1 2 3 4)(5 6 7 8 9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (1,6,3,12)(2,15,4,9)(5,13,11,7)(8,16,14,10), (1,12)(2,9)(3,6)(4,15)(5,13)(7,11)(8,16)(10,14), (1,16,3,10)(2,13,4,7)(5,15,11,9)(6,14,12,8), (5,11)(7,13)(8,14)(10,16), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16)>;
G:=Group( (1,6,3,12)(2,15,4,9)(5,13,11,7)(8,16,14,10), (1,12)(2,9)(3,6)(4,15)(5,13)(7,11)(8,16)(10,14), (1,16,3,10)(2,13,4,7)(5,15,11,9)(6,14,12,8), (5,11)(7,13)(8,14)(10,16), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16) );
G=PermutationGroup([(1,6,3,12),(2,15,4,9),(5,13,11,7),(8,16,14,10)], [(1,12),(2,9),(3,6),(4,15),(5,13),(7,11),(8,16),(10,14)], [(1,16,3,10),(2,13,4,7),(5,15,11,9),(6,14,12,8)], [(5,11),(7,13),(8,14),(10,16)], [(1,2,3,4),(5,6,7,8,9,10,11,12,13,14,15,16)])
G:=TransitiveGroup(16,423);
Matrix representation ►G ⊆ GL4(𝔽5) generated by
0 | 3 | 0 | 0 |
3 | 0 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 2 | 0 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 2 |
3 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
G:=sub<GL(4,GF(5))| [0,3,0,0,3,0,0,0,0,0,0,2,0,0,2,0],[1,0,0,0,0,4,0,0,0,0,1,0,0,0,0,4],[0,0,3,0,0,0,0,2,3,0,0,0,0,2,0,0],[0,0,2,0,0,0,0,3,3,0,0,0,0,2,0,0],[2,0,0,0,0,0,0,1,0,3,0,0,0,0,1,0] >;
Character table of 2+ (1+4).3C6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 6 | 6 | 6 | 6 | 6 | 16 | 16 | 1 | 1 | 6 | 6 | 6 | 6 | 6 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | linear of order 6 |
ρ7 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ8 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ9 | 3 | 3 | 1 | -1 | -1 | -1 | -3 | 0 | 0 | -3 | -3 | 3 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ10 | 3 | 3 | -3 | -1 | -1 | -1 | 1 | 0 | 0 | -3 | -3 | -1 | 1 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ11 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ12 | 3 | 3 | 1 | -1 | 3 | -1 | 1 | 0 | 0 | -3 | -3 | -1 | 1 | 1 | -3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ13 | 3 | 3 | 1 | -1 | -1 | 3 | 1 | 0 | 0 | -3 | -3 | -1 | -3 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | 1 | 3 | -1 | -1 | 1 | 0 | 0 | -3 | -3 | -1 | 1 | -3 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ15 | 3 | 3 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ16 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | 0 | 0 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ17 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | -1 | -1 | i | i | -i | -i | complex faithful |
ρ18 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -i | -i | i | i | complex faithful |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ62 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | complex faithful |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | ζ62 | ζ32 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | ζ62 | ζ32 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ62 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | complex faithful |
In GAP, Magma, Sage, TeX
2_+^{(1+4)}._3C_6
% in TeX
G:=Group("ES+(2,2).3C6");
// GroupNames label
G:=SmallGroup(192,1509);
// by ID
G=gap.SmallGroup(192,1509);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,135,262,851,375,1524,1027]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=d^2=1,c^2=e^6=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^2*b*c,b*c=c*b,b*d=d*b,e*b*e^-1=a^2*b*c*d,d*c*d=a^2*c,e*c*e^-1=a^-1*d,e*d*e^-1=a^-1*b*d>;
// generators/relations