Copied to
clipboard

?

G = 2+ (1+4).3C6order 192 = 26·3

The non-split extension by 2+ (1+4) of C6 acting via C6/C2=C3

non-abelian, soluble, monomial

Aliases: 2+ (1+4).3C6, C4○D42A4, (C22×C4)⋊3A4, Q8.2(C2×A4), C23⋊A44C2, C23.7(C2×A4), C4.2(C22⋊A4), C2.C252C3, C2.5(C2×C22⋊A4), SmallGroup(192,1509)

Series: Derived Chief Lower central Upper central

C1C22+ (1+4) — 2+ (1+4).3C6
C1C2C232+ (1+4)C23⋊A4 — 2+ (1+4).3C6
2+ (1+4) — 2+ (1+4).3C6

Subgroups: 567 in 165 conjugacy classes, 17 normal (7 characteristic)
C1, C2, C2 [×5], C3, C4, C4 [×5], C22 [×12], C6, C2×C4 [×20], D4 [×20], Q8 [×2], Q8 [×6], C23 [×3], C23 [×4], C12, A4 [×3], C22×C4 [×3], C22×C4 [×4], C2×D4 [×15], C2×Q8 [×5], C4○D4 [×2], C4○D4 [×26], SL2(𝔽3) [×2], C2×A4 [×3], C2×C4○D4 [×5], 2+ (1+4), 2+ (1+4) [×3], 2- (1+4) [×2], C4×A4 [×3], C4.A4 [×2], C2.C25, C23⋊A4, 2+ (1+4).3C6

Quotients:
C1, C2, C3, C6, A4 [×5], C2×A4 [×5], C22⋊A4, C2×C22⋊A4, 2+ (1+4).3C6

Generators and relations
 G = < a,b,c,d,e | a4=b2=d2=1, c2=e6=a2, bab=a-1, ac=ca, ad=da, eae-1=a2bc, bc=cb, bd=db, ebe-1=a2bcd, dcd=a2c, ece-1=a-1d, ede-1=a-1bd >

Permutation representations
On 16 points - transitive group 16T423
Generators in S16
(1 6 3 12)(2 15 4 9)(5 13 11 7)(8 16 14 10)
(1 12)(2 9)(3 6)(4 15)(5 13)(7 11)(8 16)(10 14)
(1 16 3 10)(2 13 4 7)(5 15 11 9)(6 14 12 8)
(5 11)(7 13)(8 14)(10 16)
(1 2 3 4)(5 6 7 8 9 10 11 12 13 14 15 16)

G:=sub<Sym(16)| (1,6,3,12)(2,15,4,9)(5,13,11,7)(8,16,14,10), (1,12)(2,9)(3,6)(4,15)(5,13)(7,11)(8,16)(10,14), (1,16,3,10)(2,13,4,7)(5,15,11,9)(6,14,12,8), (5,11)(7,13)(8,14)(10,16), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16)>;

G:=Group( (1,6,3,12)(2,15,4,9)(5,13,11,7)(8,16,14,10), (1,12)(2,9)(3,6)(4,15)(5,13)(7,11)(8,16)(10,14), (1,16,3,10)(2,13,4,7)(5,15,11,9)(6,14,12,8), (5,11)(7,13)(8,14)(10,16), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16) );

G=PermutationGroup([(1,6,3,12),(2,15,4,9),(5,13,11,7),(8,16,14,10)], [(1,12),(2,9),(3,6),(4,15),(5,13),(7,11),(8,16),(10,14)], [(1,16,3,10),(2,13,4,7),(5,15,11,9),(6,14,12,8)], [(5,11),(7,13),(8,14),(10,16)], [(1,2,3,4),(5,6,7,8,9,10,11,12,13,14,15,16)])

G:=TransitiveGroup(16,423);

Matrix representation G ⊆ GL4(𝔽5) generated by

0300
3000
0002
0020
,
1000
0400
0010
0004
,
0030
0002
3000
0200
,
0030
0002
2000
0300
,
2000
0030
0001
0100
G:=sub<GL(4,GF(5))| [0,3,0,0,3,0,0,0,0,0,0,2,0,0,2,0],[1,0,0,0,0,4,0,0,0,0,1,0,0,0,0,4],[0,0,3,0,0,0,0,2,3,0,0,0,0,2,0,0],[0,0,2,0,0,0,0,3,3,0,0,0,0,2,0,0],[2,0,0,0,0,0,0,1,0,3,0,0,0,0,1,0] >;

Character table of 2+ (1+4).3C6

 class 12A2B2C2D2E2F3A3B4A4B4C4D4E4F4G6A6B12A12B12C12D
 size 116666616161166666161616161616
ρ11111111111111111111111    trivial
ρ211-1111-111-1-11-1-1-1111-1-1-1-1    linear of order 2
ρ31111111ζ3ζ321111111ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ411-1111-1ζ3ζ32-1-11-1-1-11ζ3ζ32ζ6ζ65ζ6ζ65    linear of order 6
ρ51111111ζ32ζ31111111ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ611-1111-1ζ32ζ3-1-11-1-1-11ζ32ζ3ζ65ζ6ζ65ζ6    linear of order 6
ρ733-1-1-1-1300333-1-1-1-1000000    orthogonal lifted from A4
ρ8333-1-1-1-10033-1-1-1-13000000    orthogonal lifted from A4
ρ9331-1-1-1-300-3-33111-1000000    orthogonal lifted from C2×A4
ρ1033-3-1-1-1100-3-3-11113000000    orthogonal lifted from C2×A4
ρ1133-13-1-1-10033-1-13-1-1000000    orthogonal lifted from A4
ρ12331-13-1100-3-3-111-3-1000000    orthogonal lifted from C2×A4
ρ13331-1-13100-3-3-1-311-1000000    orthogonal lifted from C2×A4
ρ143313-1-1100-3-3-11-31-1000000    orthogonal lifted from C2×A4
ρ1533-1-13-1-10033-1-1-13-1000000    orthogonal lifted from A4
ρ1633-1-1-13-10033-13-1-1-1000000    orthogonal lifted from A4
ρ174-400000114i4i00000-1-1ii-i-i    complex faithful
ρ184-400000114i4i00000-1-1-i-iii    complex faithful
ρ194-400000ζ32ζ624i4i00000ζ6ζ65ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32    complex faithful
ρ204-400000ζ62ζ324i4i00000ζ65ζ6ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3    complex faithful
ρ214-400000ζ62ζ324i4i00000ζ65ζ6ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3    complex faithful
ρ224-400000ζ32ζ624i4i00000ζ6ζ65ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32    complex faithful

In GAP, Magma, Sage, TeX

2_+^{(1+4)}._3C_6
% in TeX

G:=Group("ES+(2,2).3C6");
// GroupNames label

G:=SmallGroup(192,1509);
// by ID

G=gap.SmallGroup(192,1509);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,135,262,851,375,1524,1027]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=d^2=1,c^2=e^6=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^2*b*c,b*c=c*b,b*d=d*b,e*b*e^-1=a^2*b*c*d,d*c*d=a^2*c,e*c*e^-1=a^-1*d,e*d*e^-1=a^-1*b*d>;
// generators/relations

׿
×
𝔽