Extensions 1→N→G→Q→1 with N=C2xD4 and Q=Dic3

Direct product G=NxQ with N=C2xD4 and Q=Dic3
dρLabelID
C2xD4xDic396C2xD4xDic3192,1354

Semidirect products G=N:Q with N=C2xD4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2xD4):1Dic3 = (C6xD4):C4φ: Dic3/C3C4 ⊆ Out C2xD448(C2xD4):1Dic3192,96
(C2xD4):2Dic3 = C42:5Dic3φ: Dic3/C3C4 ⊆ Out C2xD4244(C2xD4):2Dic3192,104
(C2xD4):3Dic3 = C2xD4:Dic3φ: Dic3/C6C2 ⊆ Out C2xD496(C2xD4):3Dic3192,773
(C2xD4):4Dic3 = (C6xD4):6C4φ: Dic3/C6C2 ⊆ Out C2xD448(C2xD4):4Dic3192,774
(C2xD4):5Dic3 = C2xC23.7D6φ: Dic3/C6C2 ⊆ Out C2xD448(C2xD4):5Dic3192,778
(C2xD4):6Dic3 = C24.29D6φ: Dic3/C6C2 ⊆ Out C2xD496(C2xD4):6Dic3192,779
(C2xD4):7Dic3 = C24.30D6φ: Dic3/C6C2 ⊆ Out C2xD496(C2xD4):7Dic3192,780
(C2xD4):8Dic3 = C2xQ8:3Dic3φ: Dic3/C6C2 ⊆ Out C2xD448(C2xD4):8Dic3192,794
(C2xD4):9Dic3 = (C6xD4):9C4φ: Dic3/C6C2 ⊆ Out C2xD4484(C2xD4):9Dic3192,795
(C2xD4):10Dic3 = (C6xD4):10C4φ: Dic3/C6C2 ⊆ Out C2xD4484(C2xD4):10Dic3192,799
(C2xD4):11Dic3 = C24.49D6φ: Dic3/C6C2 ⊆ Out C2xD448(C2xD4):11Dic3192,1357

Non-split extensions G=N.Q with N=C2xD4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2xD4).1Dic3 = C42.7D6φ: Dic3/C3C4 ⊆ Out C2xD496(C2xD4).1Dic3192,99
(C2xD4).2Dic3 = C42.Dic3φ: Dic3/C3C4 ⊆ Out C2xD4484(C2xD4).2Dic3192,101
(C2xD4).3Dic3 = C12.9D8φ: Dic3/C3C4 ⊆ Out C2xD496(C2xD4).3Dic3192,103
(C2xD4).4Dic3 = C12.57D8φ: Dic3/C6C2 ⊆ Out C2xD496(C2xD4).4Dic3192,93
(C2xD4).5Dic3 = C42.47D6φ: Dic3/C6C2 ⊆ Out C2xD496(C2xD4).5Dic3192,570
(C2xD4).6Dic3 = C12:3M4(2)φ: Dic3/C6C2 ⊆ Out C2xD496(C2xD4).6Dic3192,571
(C2xD4).7Dic3 = C2xC12.D4φ: Dic3/C6C2 ⊆ Out C2xD448(C2xD4).7Dic3192,775
(C2xD4).8Dic3 = (C6xD4).11C4φ: Dic3/C6C2 ⊆ Out C2xD496(C2xD4).8Dic3192,793
(C2xD4).9Dic3 = (C6xD4).16C4φ: Dic3/C6C2 ⊆ Out C2xD4484(C2xD4).9Dic3192,796
(C2xD4).10Dic3 = C12.76C24φ: Dic3/C6C2 ⊆ Out C2xD4484(C2xD4).10Dic3192,1378
(C2xD4).11Dic3 = D4xC3:C8φ: trivial image96(C2xD4).11Dic3192,569
(C2xD4).12Dic3 = C2xD4.Dic3φ: trivial image96(C2xD4).12Dic3192,1377

׿
x
:
Z
F
o
wr
Q
<