Copied to
clipboard

G = C12.57D8order 192 = 26·3

11st non-split extension by C12 of D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.57D8, C12.41SD16, C42.194D6, C12.7M4(2), D4⋊(C3⋊C8), C33(D4⋊C8), (C3×D4)⋊1C8, C6.14C4≀C2, C12.7(C2×C8), C12⋊C89C2, (C6×D4).7C4, (C4×D4).1S3, (D4×C12).1C2, C4⋊C4.3Dic3, C4.30(D4⋊S3), (C2×C12).489D4, (C2×D4).4Dic3, C6.15(C22⋊C8), C4.16(D4.S3), (C4×C12).45C22, C4.1(C4.Dic3), C6.22(D4⋊C4), C2.2(D4⋊Dic3), C2.2(Q83Dic3), C2.5(C12.55D4), C22.29(C6.D4), (C4×C3⋊C8)⋊2C2, C4.1(C2×C3⋊C8), (C3×C4⋊C4).5C4, (C2×C12).59(C2×C4), (C2×C4).37(C2×Dic3), (C2×C4).161(C3⋊D4), (C2×C6).92(C22⋊C4), SmallGroup(192,93)

Series: Derived Chief Lower central Upper central

C1C12 — C12.57D8
C1C3C6C2×C6C2×C12C4×C12C12⋊C8 — C12.57D8
C3C6C12 — C12.57D8
C1C2×C4C42C4×D4

Generators and relations for C12.57D8
 G = < a,b,c | a12=b8=1, c2=a9, bab-1=cac-1=a5, cbc-1=a9b-1 >

Subgroups: 184 in 82 conjugacy classes, 39 normal (35 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C3⋊C8, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C4×C8, C4⋊C8, C4×D4, C2×C3⋊C8, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, D4⋊C8, C4×C3⋊C8, C12⋊C8, D4×C12, C12.57D8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, Dic3, D6, C22⋊C4, C2×C8, M4(2), D8, SD16, C3⋊C8, C2×Dic3, C3⋊D4, C22⋊C8, D4⋊C4, C4≀C2, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3, C6.D4, D4⋊C8, C12.55D4, D4⋊Dic3, Q83Dic3, C12.57D8

Smallest permutation representation of C12.57D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 54 46 69 85 74 27 13)(2 59 47 62 86 79 28 18)(3 52 48 67 87 84 29 23)(4 57 37 72 88 77 30 16)(5 50 38 65 89 82 31 21)(6 55 39 70 90 75 32 14)(7 60 40 63 91 80 33 19)(8 53 41 68 92 73 34 24)(9 58 42 61 93 78 35 17)(10 51 43 66 94 83 36 22)(11 56 44 71 95 76 25 15)(12 49 45 64 96 81 26 20)
(1 22 10 19 7 16 4 13)(2 15 11 24 8 21 5 18)(3 20 12 17 9 14 6 23)(25 59 34 56 31 53 28 50)(26 52 35 49 32 58 29 55)(27 57 36 54 33 51 30 60)(37 80 46 77 43 74 40 83)(38 73 47 82 44 79 41 76)(39 78 48 75 45 84 42 81)(61 93 70 90 67 87 64 96)(62 86 71 95 68 92 65 89)(63 91 72 88 69 85 66 94)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54,46,69,85,74,27,13)(2,59,47,62,86,79,28,18)(3,52,48,67,87,84,29,23)(4,57,37,72,88,77,30,16)(5,50,38,65,89,82,31,21)(6,55,39,70,90,75,32,14)(7,60,40,63,91,80,33,19)(8,53,41,68,92,73,34,24)(9,58,42,61,93,78,35,17)(10,51,43,66,94,83,36,22)(11,56,44,71,95,76,25,15)(12,49,45,64,96,81,26,20), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,59,34,56,31,53,28,50)(26,52,35,49,32,58,29,55)(27,57,36,54,33,51,30,60)(37,80,46,77,43,74,40,83)(38,73,47,82,44,79,41,76)(39,78,48,75,45,84,42,81)(61,93,70,90,67,87,64,96)(62,86,71,95,68,92,65,89)(63,91,72,88,69,85,66,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54,46,69,85,74,27,13)(2,59,47,62,86,79,28,18)(3,52,48,67,87,84,29,23)(4,57,37,72,88,77,30,16)(5,50,38,65,89,82,31,21)(6,55,39,70,90,75,32,14)(7,60,40,63,91,80,33,19)(8,53,41,68,92,73,34,24)(9,58,42,61,93,78,35,17)(10,51,43,66,94,83,36,22)(11,56,44,71,95,76,25,15)(12,49,45,64,96,81,26,20), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,59,34,56,31,53,28,50)(26,52,35,49,32,58,29,55)(27,57,36,54,33,51,30,60)(37,80,46,77,43,74,40,83)(38,73,47,82,44,79,41,76)(39,78,48,75,45,84,42,81)(61,93,70,90,67,87,64,96)(62,86,71,95,68,92,65,89)(63,91,72,88,69,85,66,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,54,46,69,85,74,27,13),(2,59,47,62,86,79,28,18),(3,52,48,67,87,84,29,23),(4,57,37,72,88,77,30,16),(5,50,38,65,89,82,31,21),(6,55,39,70,90,75,32,14),(7,60,40,63,91,80,33,19),(8,53,41,68,92,73,34,24),(9,58,42,61,93,78,35,17),(10,51,43,66,94,83,36,22),(11,56,44,71,95,76,25,15),(12,49,45,64,96,81,26,20)], [(1,22,10,19,7,16,4,13),(2,15,11,24,8,21,5,18),(3,20,12,17,9,14,6,23),(25,59,34,56,31,53,28,50),(26,52,35,49,32,58,29,55),(27,57,36,54,33,51,30,60),(37,80,46,77,43,74,40,83),(38,73,47,82,44,79,41,76),(39,78,48,75,45,84,42,81),(61,93,70,90,67,87,64,96),(62,86,71,95,68,92,65,89),(63,91,72,88,69,85,66,94)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E6F6G8A···8H8I8J8K8L12A12B12C12D12E···12L
order1222223444444444466666668···888881212121212···12
size1111442111122224422244446···61212121222224···4

48 irreducible representations

dim1111111222222222222444
type+++++++--++-
imageC1C2C2C2C4C4C8S3D4D6Dic3Dic3M4(2)D8SD16C3⋊D4C3⋊C8C4≀C2C4.Dic3D4⋊S3D4.S3Q83Dic3
kernelC12.57D8C4×C3⋊C8C12⋊C8D4×C12C3×C4⋊C4C6×D4C3×D4C4×D4C2×C12C42C4⋊C4C2×D4C12C12C12C2×C4D4C6C4C4C4C2
# reps1111228121112224444112

Matrix representation of C12.57D8 in GL4(𝔽73) generated by

245800
0300
00270
00027
,
247100
194900
005914
005959
,
49100
542400
005914
001414
G:=sub<GL(4,GF(73))| [24,0,0,0,58,3,0,0,0,0,27,0,0,0,0,27],[24,19,0,0,71,49,0,0,0,0,59,59,0,0,14,59],[49,54,0,0,1,24,0,0,0,0,59,14,0,0,14,14] >;

C12.57D8 in GAP, Magma, Sage, TeX

C_{12}._{57}D_8
% in TeX

G:=Group("C12.57D8");
// GroupNames label

G:=SmallGroup(192,93);
// by ID

G=gap.SmallGroup(192,93);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,100,1123,570,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=1,c^2=a^9,b*a*b^-1=c*a*c^-1=a^5,c*b*c^-1=a^9*b^-1>;
// generators/relations

׿
×
𝔽