Copied to
clipboard

G = C12.57D8order 192 = 26·3

11st non-split extension by C12 of D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.57D8, C12.41SD16, C42.194D6, C12.7M4(2), D4:(C3:C8), C3:3(D4:C8), (C3xD4):1C8, C6.14C4wrC2, C12.7(C2xC8), C12:C8:9C2, (C6xD4).7C4, (C4xD4).1S3, (D4xC12).1C2, C4:C4.3Dic3, C4.30(D4:S3), (C2xC12).489D4, (C2xD4).4Dic3, C6.15(C22:C8), C4.16(D4.S3), (C4xC12).45C22, C4.1(C4.Dic3), C6.22(D4:C4), C2.2(D4:Dic3), C2.2(Q8:3Dic3), C2.5(C12.55D4), C22.29(C6.D4), (C4xC3:C8):2C2, C4.1(C2xC3:C8), (C3xC4:C4).5C4, (C2xC12).59(C2xC4), (C2xC4).37(C2xDic3), (C2xC4).161(C3:D4), (C2xC6).92(C22:C4), SmallGroup(192,93)

Series: Derived Chief Lower central Upper central

C1C12 — C12.57D8
C1C3C6C2xC6C2xC12C4xC12C12:C8 — C12.57D8
C3C6C12 — C12.57D8
C1C2xC4C42C4xD4

Generators and relations for C12.57D8
 G = < a,b,c | a12=b8=1, c2=a9, bab-1=cac-1=a5, cbc-1=a9b-1 >

Subgroups: 184 in 82 conjugacy classes, 39 normal (35 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, C23, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C22xC4, C2xD4, C3:C8, C2xC12, C2xC12, C3xD4, C3xD4, C22xC6, C4xC8, C4:C8, C4xD4, C2xC3:C8, C4xC12, C3xC22:C4, C3xC4:C4, C22xC12, C6xD4, D4:C8, C4xC3:C8, C12:C8, D4xC12, C12.57D8
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D4, Dic3, D6, C22:C4, C2xC8, M4(2), D8, SD16, C3:C8, C2xDic3, C3:D4, C22:C8, D4:C4, C4wrC2, C2xC3:C8, C4.Dic3, D4:S3, D4.S3, C6.D4, D4:C8, C12.55D4, D4:Dic3, Q8:3Dic3, C12.57D8

Smallest permutation representation of C12.57D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 54 46 69 85 74 27 13)(2 59 47 62 86 79 28 18)(3 52 48 67 87 84 29 23)(4 57 37 72 88 77 30 16)(5 50 38 65 89 82 31 21)(6 55 39 70 90 75 32 14)(7 60 40 63 91 80 33 19)(8 53 41 68 92 73 34 24)(9 58 42 61 93 78 35 17)(10 51 43 66 94 83 36 22)(11 56 44 71 95 76 25 15)(12 49 45 64 96 81 26 20)
(1 22 10 19 7 16 4 13)(2 15 11 24 8 21 5 18)(3 20 12 17 9 14 6 23)(25 59 34 56 31 53 28 50)(26 52 35 49 32 58 29 55)(27 57 36 54 33 51 30 60)(37 80 46 77 43 74 40 83)(38 73 47 82 44 79 41 76)(39 78 48 75 45 84 42 81)(61 93 70 90 67 87 64 96)(62 86 71 95 68 92 65 89)(63 91 72 88 69 85 66 94)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54,46,69,85,74,27,13)(2,59,47,62,86,79,28,18)(3,52,48,67,87,84,29,23)(4,57,37,72,88,77,30,16)(5,50,38,65,89,82,31,21)(6,55,39,70,90,75,32,14)(7,60,40,63,91,80,33,19)(8,53,41,68,92,73,34,24)(9,58,42,61,93,78,35,17)(10,51,43,66,94,83,36,22)(11,56,44,71,95,76,25,15)(12,49,45,64,96,81,26,20), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,59,34,56,31,53,28,50)(26,52,35,49,32,58,29,55)(27,57,36,54,33,51,30,60)(37,80,46,77,43,74,40,83)(38,73,47,82,44,79,41,76)(39,78,48,75,45,84,42,81)(61,93,70,90,67,87,64,96)(62,86,71,95,68,92,65,89)(63,91,72,88,69,85,66,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54,46,69,85,74,27,13)(2,59,47,62,86,79,28,18)(3,52,48,67,87,84,29,23)(4,57,37,72,88,77,30,16)(5,50,38,65,89,82,31,21)(6,55,39,70,90,75,32,14)(7,60,40,63,91,80,33,19)(8,53,41,68,92,73,34,24)(9,58,42,61,93,78,35,17)(10,51,43,66,94,83,36,22)(11,56,44,71,95,76,25,15)(12,49,45,64,96,81,26,20), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,59,34,56,31,53,28,50)(26,52,35,49,32,58,29,55)(27,57,36,54,33,51,30,60)(37,80,46,77,43,74,40,83)(38,73,47,82,44,79,41,76)(39,78,48,75,45,84,42,81)(61,93,70,90,67,87,64,96)(62,86,71,95,68,92,65,89)(63,91,72,88,69,85,66,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,54,46,69,85,74,27,13),(2,59,47,62,86,79,28,18),(3,52,48,67,87,84,29,23),(4,57,37,72,88,77,30,16),(5,50,38,65,89,82,31,21),(6,55,39,70,90,75,32,14),(7,60,40,63,91,80,33,19),(8,53,41,68,92,73,34,24),(9,58,42,61,93,78,35,17),(10,51,43,66,94,83,36,22),(11,56,44,71,95,76,25,15),(12,49,45,64,96,81,26,20)], [(1,22,10,19,7,16,4,13),(2,15,11,24,8,21,5,18),(3,20,12,17,9,14,6,23),(25,59,34,56,31,53,28,50),(26,52,35,49,32,58,29,55),(27,57,36,54,33,51,30,60),(37,80,46,77,43,74,40,83),(38,73,47,82,44,79,41,76),(39,78,48,75,45,84,42,81),(61,93,70,90,67,87,64,96),(62,86,71,95,68,92,65,89),(63,91,72,88,69,85,66,94)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E6F6G8A···8H8I8J8K8L12A12B12C12D12E···12L
order1222223444444444466666668···888881212121212···12
size1111442111122224422244446···61212121222224···4

48 irreducible representations

dim1111111222222222222444
type+++++++--++-
imageC1C2C2C2C4C4C8S3D4D6Dic3Dic3M4(2)D8SD16C3:D4C3:C8C4wrC2C4.Dic3D4:S3D4.S3Q8:3Dic3
kernelC12.57D8C4xC3:C8C12:C8D4xC12C3xC4:C4C6xD4C3xD4C4xD4C2xC12C42C4:C4C2xD4C12C12C12C2xC4D4C6C4C4C4C2
# reps1111228121112224444112

Matrix representation of C12.57D8 in GL4(F73) generated by

245800
0300
00270
00027
,
247100
194900
005914
005959
,
49100
542400
005914
001414
G:=sub<GL(4,GF(73))| [24,0,0,0,58,3,0,0,0,0,27,0,0,0,0,27],[24,19,0,0,71,49,0,0,0,0,59,59,0,0,14,59],[49,54,0,0,1,24,0,0,0,0,59,14,0,0,14,14] >;

C12.57D8 in GAP, Magma, Sage, TeX

C_{12}._{57}D_8
% in TeX

G:=Group("C12.57D8");
// GroupNames label

G:=SmallGroup(192,93);
// by ID

G=gap.SmallGroup(192,93);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,100,1123,570,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=1,c^2=a^9,b*a*b^-1=c*a*c^-1=a^5,c*b*c^-1=a^9*b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<