Extensions 1→N→G→Q→1 with N=C6 and Q=C4.Q8

Direct product G=N×Q with N=C6 and Q=C4.Q8
dρLabelID
C6×C4.Q8192C6xC4.Q8192,858

Semidirect products G=N:Q with N=C6 and Q=C4.Q8
extensionφ:Q→Aut NdρLabelID
C61(C4.Q8) = C2×C12.Q8φ: C4.Q8/C4⋊C4C2 ⊆ Aut C6192C6:1(C4.Q8)192,522
C62(C4.Q8) = C2×C8⋊Dic3φ: C4.Q8/C2×C8C2 ⊆ Aut C6192C6:2(C4.Q8)192,663

Non-split extensions G=N.Q with N=C6 and Q=C4.Q8
extensionφ:Q→Aut NdρLabelID
C6.1(C4.Q8) = C12.39SD16φ: C4.Q8/C4⋊C4C2 ⊆ Aut C6192C6.1(C4.Q8)192,39
C6.2(C4.Q8) = C8.Dic6φ: C4.Q8/C4⋊C4C2 ⊆ Aut C6484C6.2(C4.Q8)192,46
C6.3(C4.Q8) = C24.6Q8φ: C4.Q8/C4⋊C4C2 ⊆ Aut C6484C6.3(C4.Q8)192,53
C6.4(C4.Q8) = C12.C42φ: C4.Q8/C4⋊C4C2 ⊆ Aut C6192C6.4(C4.Q8)192,88
C6.5(C4.Q8) = C242C8φ: C4.Q8/C2×C8C2 ⊆ Aut C6192C6.5(C4.Q8)192,16
C6.6(C4.Q8) = C24.Q8φ: C4.Q8/C2×C8C2 ⊆ Aut C6484C6.6(C4.Q8)192,72
C6.7(C4.Q8) = C12.9C42φ: C4.Q8/C2×C8C2 ⊆ Aut C6192C6.7(C4.Q8)192,110
C6.8(C4.Q8) = C3×C82C8central extension (φ=1)192C6.8(C4.Q8)192,140
C6.9(C4.Q8) = C3×C22.4Q16central extension (φ=1)192C6.9(C4.Q8)192,146
C6.10(C4.Q8) = C3×C8.Q8central extension (φ=1)484C6.10(C4.Q8)192,171

׿
×
𝔽