p-group, metacyclic, nilpotent (class 3), monomial
Aliases: C8⋊2C4, C4.1Q8, C2.3SD16, C22.10D4, C4⋊C4.2C2, (C2×C8).6C2, C4.6(C2×C4), C2.3(C4⋊C4), (C2×C4).17C22, SmallGroup(32,13)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.Q8
G = < a,b,c | a4=1, b4=a2, c2=a-1b2, ab=ba, cac-1=a-1, cbc-1=b3 >
Character table of C4.Q8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | -i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
(1 21 5 17)(2 22 6 18)(3 23 7 19)(4 24 8 20)(9 28 13 32)(10 29 14 25)(11 30 15 26)(12 31 16 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 11 19 28)(2 14 20 31)(3 9 21 26)(4 12 22 29)(5 15 23 32)(6 10 24 27)(7 13 17 30)(8 16 18 25)
G:=sub<Sym(32)| (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,19,28)(2,14,20,31)(3,9,21,26)(4,12,22,29)(5,15,23,32)(6,10,24,27)(7,13,17,30)(8,16,18,25)>;
G:=Group( (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,19,28)(2,14,20,31)(3,9,21,26)(4,12,22,29)(5,15,23,32)(6,10,24,27)(7,13,17,30)(8,16,18,25) );
G=PermutationGroup([[(1,21,5,17),(2,22,6,18),(3,23,7,19),(4,24,8,20),(9,28,13,32),(10,29,14,25),(11,30,15,26),(12,31,16,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,11,19,28),(2,14,20,31),(3,9,21,26),(4,12,22,29),(5,15,23,32),(6,10,24,27),(7,13,17,30),(8,16,18,25)]])
C4.Q8 is a maximal subgroup of
D8⋊2C4 C23.25D4 M4(2)⋊C4 C4×SD16 Q16⋊C4 D8⋊C4 C8⋊8D4 C8⋊2D4 C8.D4 Q8⋊Q8 D4⋊2Q8 D4.Q8 Q8.Q8 C23.46D4 C23.19D4 C23.47D4 C23.20D4 C8⋊3Q8 C8⋊Q8 C40⋊C4 C62.6D4 C4.PSU3(𝔽2) C8⋊(C32⋊C4) F9⋊C4 D26.8D4
C4p.Q8: C8.Q8 C8.5Q8 C12.Q8 C8⋊Dic3 C20.Q8 C40⋊6C4 C4.Dic14 C8⋊Dic7 ...
C4.Q8 is a maximal quotient of
C8⋊2C8 C22.4Q16 C40⋊C4 C62.6D4 C4.PSU3(𝔽2) C8⋊(C32⋊C4) F9⋊C4 D26.8D4
C4p.Q8: C8.Q8 C12.Q8 C8⋊Dic3 C20.Q8 C40⋊6C4 C4.Dic14 C8⋊Dic7 C4.Dic22 ...
Matrix representation of C4.Q8 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 0 | 16 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 5 | 12 |
0 | 5 | 5 |
4 | 0 | 0 |
0 | 12 | 5 |
0 | 5 | 5 |
G:=sub<GL(3,GF(17))| [16,0,0,0,0,1,0,16,0],[1,0,0,0,5,5,0,12,5],[4,0,0,0,12,5,0,5,5] >;
C4.Q8 in GAP, Magma, Sage, TeX
C_4.Q_8
% in TeX
G:=Group("C4.Q8");
// GroupNames label
G:=SmallGroup(32,13);
// by ID
G=gap.SmallGroup(32,13);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,40,61,26,302,72]);
// Polycyclic
G:=Group<a,b,c|a^4=1,b^4=a^2,c^2=a^-1*b^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^3>;
// generators/relations
Export
Subgroup lattice of C4.Q8 in TeX
Character table of C4.Q8 in TeX