Copied to
clipboard

G = C4.Q8order 32 = 25

1st non-split extension by C4 of Q8 acting via Q8/C4=C2

p-group, metacyclic, nilpotent (class 3), monomial

Aliases: C82C4, C4.1Q8, C2.3SD16, C22.10D4, C4⋊C4.2C2, (C2×C8).6C2, C4.6(C2×C4), C2.3(C4⋊C4), (C2×C4).17C22, SmallGroup(32,13)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C4.Q8
C1C2C22C2×C4C2×C8 — C4.Q8
C1C2C4 — C4.Q8
C1C22C2×C4 — C4.Q8
C1C2C2C2×C4 — C4.Q8

Generators and relations for C4.Q8
 G = < a,b,c | a4=1, b4=a2, c2=a-1b2, ab=ba, cac-1=a-1, cbc-1=b3 >

4C4
4C4
2C2×C4
2C2×C4

Character table of C4.Q8

 class 12A2B2C4A4B4C4D4E4F8A8B8C8D
 size 11112244442222
ρ111111111111111    trivial
ρ2111111-111-1-1-1-1-1    linear of order 2
ρ31111111-1-11-1-1-1-1    linear of order 2
ρ4111111-1-1-1-11111    linear of order 2
ρ51-11-11-1i-ii-i-11-11    linear of order 4
ρ61-11-11-1-i-iii1-11-1    linear of order 4
ρ71-11-11-1ii-i-i1-11-1    linear of order 4
ρ81-11-11-1-ii-ii-11-11    linear of order 4
ρ92222-2-200000000    orthogonal lifted from D4
ρ102-22-2-2200000000    symplectic lifted from Q8, Schur index 2
ρ1122-2-2000000--2-2-2--2    complex lifted from SD16
ρ122-2-22000000--2--2-2-2    complex lifted from SD16
ρ1322-2-2000000-2--2--2-2    complex lifted from SD16
ρ142-2-22000000-2-2--2--2    complex lifted from SD16

Smallest permutation representation of C4.Q8
Regular action on 32 points
Generators in S32
(1 21 5 17)(2 22 6 18)(3 23 7 19)(4 24 8 20)(9 28 13 32)(10 29 14 25)(11 30 15 26)(12 31 16 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 11 19 28)(2 14 20 31)(3 9 21 26)(4 12 22 29)(5 15 23 32)(6 10 24 27)(7 13 17 30)(8 16 18 25)

G:=sub<Sym(32)| (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,19,28)(2,14,20,31)(3,9,21,26)(4,12,22,29)(5,15,23,32)(6,10,24,27)(7,13,17,30)(8,16,18,25)>;

G:=Group( (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,19,28)(2,14,20,31)(3,9,21,26)(4,12,22,29)(5,15,23,32)(6,10,24,27)(7,13,17,30)(8,16,18,25) );

G=PermutationGroup([(1,21,5,17),(2,22,6,18),(3,23,7,19),(4,24,8,20),(9,28,13,32),(10,29,14,25),(11,30,15,26),(12,31,16,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,11,19,28),(2,14,20,31),(3,9,21,26),(4,12,22,29),(5,15,23,32),(6,10,24,27),(7,13,17,30),(8,16,18,25)])

Matrix representation of C4.Q8 in GL3(𝔽17) generated by

1600
0016
010
,
100
0512
055
,
400
0125
055
G:=sub<GL(3,GF(17))| [16,0,0,0,0,1,0,16,0],[1,0,0,0,5,5,0,12,5],[4,0,0,0,12,5,0,5,5] >;

C4.Q8 in GAP, Magma, Sage, TeX

C_4.Q_8
% in TeX

G:=Group("C4.Q8");
// GroupNames label

G:=SmallGroup(32,13);
// by ID

G=gap.SmallGroup(32,13);
# by ID

G:=PCGroup([5,-2,2,-2,2,-2,40,61,26,302,72]);
// Polycyclic

G:=Group<a,b,c|a^4=1,b^4=a^2,c^2=a^-1*b^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽