extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1(C2xQ8) = S3xC8.C4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).1(C2xQ8) | 192,451 |
(C2xC6).2(C2xQ8) = M4(2).25D6 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).2(C2xQ8) | 192,452 |
(C2xC6).3(C2xQ8) = D4:5Dic6 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).3(C2xQ8) | 192,1098 |
(C2xC6).4(C2xQ8) = D4:6Dic6 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).4(C2xQ8) | 192,1102 |
(C2xC6).5(C2xQ8) = (Q8xDic3):C2 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).5(C2xQ8) | 192,1181 |
(C2xC6).6(C2xQ8) = C6.752- 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).6(C2xQ8) | 192,1182 |
(C2xC6).7(C2xQ8) = C6.512+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).7(C2xQ8) | 192,1193 |
(C2xC6).8(C2xQ8) = C6.1182+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).8(C2xQ8) | 192,1194 |
(C2xC6).9(C2xQ8) = C6.522+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).9(C2xQ8) | 192,1195 |
(C2xC6).10(C2xQ8) = C2xC12.53D4 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).10(C2xQ8) | 192,682 |
(C2xC6).11(C2xQ8) = C23.8Dic6 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).11(C2xQ8) | 192,683 |
(C2xC6).12(C2xQ8) = C42.88D6 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).12(C2xQ8) | 192,1076 |
(C2xC6).13(C2xQ8) = C42.90D6 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).13(C2xQ8) | 192,1078 |
(C2xC6).14(C2xQ8) = C6xC8.C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).14(C2xQ8) | 192,862 |
(C2xC6).15(C2xQ8) = C3xM4(2).C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).15(C2xQ8) | 192,863 |
(C2xC6).16(C2xQ8) = C3xC23.37C23 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).16(C2xQ8) | 192,1422 |
(C2xC6).17(C2xQ8) = C3xC23:2Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).17(C2xQ8) | 192,1432 |
(C2xC6).18(C2xQ8) = C3xC23.41C23 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).18(C2xQ8) | 192,1433 |
(C2xC6).19(C2xQ8) = C2.(C4xDic6) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).19(C2xQ8) | 192,213 |
(C2xC6).20(C2xQ8) = Dic3:C4:C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).20(C2xQ8) | 192,214 |
(C2xC6).21(C2xQ8) = (C2xC4).Dic6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).21(C2xQ8) | 192,219 |
(C2xC6).22(C2xQ8) = (C22xC4).85D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).22(C2xQ8) | 192,220 |
(C2xC6).23(C2xQ8) = C12:4(C4:C4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).23(C2xQ8) | 192,487 |
(C2xC6).24(C2xQ8) = (C2xDic6):7C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).24(C2xQ8) | 192,488 |
(C2xC6).25(C2xQ8) = C4xDic3:C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).25(C2xQ8) | 192,490 |
(C2xC6).26(C2xQ8) = (C2xC42).6S3 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).26(C2xQ8) | 192,492 |
(C2xC6).27(C2xQ8) = C4xC4:Dic3 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).27(C2xQ8) | 192,493 |
(C2xC6).28(C2xQ8) = C42:10Dic3 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).28(C2xQ8) | 192,494 |
(C2xC6).29(C2xQ8) = C42:11Dic3 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).29(C2xQ8) | 192,495 |
(C2xC6).30(C2xQ8) = C24.55D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).30(C2xQ8) | 192,501 |
(C2xC6).31(C2xQ8) = C24.57D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).31(C2xQ8) | 192,505 |
(C2xC6).32(C2xQ8) = C23:2Dic6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).32(C2xQ8) | 192,506 |
(C2xC6).33(C2xQ8) = C24.17D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).33(C2xQ8) | 192,507 |
(C2xC6).34(C2xQ8) = C24.18D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).34(C2xQ8) | 192,508 |
(C2xC6).35(C2xQ8) = C24.58D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).35(C2xQ8) | 192,509 |
(C2xC6).36(C2xQ8) = (C4xDic3):9C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).36(C2xQ8) | 192,536 |
(C2xC6).37(C2xQ8) = (C2xC12).54D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).37(C2xQ8) | 192,541 |
(C2xC6).38(C2xQ8) = C4:C4:6Dic3 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).38(C2xQ8) | 192,543 |
(C2xC6).39(C2xQ8) = (C2xC12).55D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).39(C2xQ8) | 192,545 |
(C2xC6).40(C2xQ8) = C2xC24.C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).40(C2xQ8) | 192,666 |
(C2xC6).41(C2xQ8) = C23.9Dic6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).41(C2xQ8) | 192,684 |
(C2xC6).42(C2xQ8) = C2xC6.C42 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).42(C2xQ8) | 192,767 |
(C2xC6).43(C2xQ8) = C24.73D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).43(C2xQ8) | 192,769 |
(C2xC6).44(C2xQ8) = C24.75D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).44(C2xQ8) | 192,771 |
(C2xC6).45(C2xQ8) = C2xC4xDic6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).45(C2xQ8) | 192,1026 |
(C2xC6).46(C2xQ8) = C2xC12:2Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).46(C2xQ8) | 192,1027 |
(C2xC6).47(C2xQ8) = C2xC12.6Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).47(C2xQ8) | 192,1028 |
(C2xC6).48(C2xQ8) = C42.274D6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).48(C2xQ8) | 192,1029 |
(C2xC6).49(C2xQ8) = C23:3Dic6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).49(C2xQ8) | 192,1042 |
(C2xC6).50(C2xQ8) = C2xC12:Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).50(C2xQ8) | 192,1056 |
(C2xC6).51(C2xQ8) = C2xC4.Dic6 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).51(C2xQ8) | 192,1058 |
(C2xC6).52(C2xQ8) = C6.72+ 1+4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).52(C2xQ8) | 192,1059 |
(C2xC6).53(C2xQ8) = C22xDic3:C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).53(C2xQ8) | 192,1342 |
(C2xC6).54(C2xQ8) = C22xC4:Dic3 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).54(C2xQ8) | 192,1344 |
(C2xC6).55(C2xQ8) = C3xD4:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).55(C2xQ8) | 192,1443 |
(C2xC6).56(C2xQ8) = (C2xC12):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).56(C2xQ8) | 192,205 |
(C2xC6).57(C2xQ8) = C6.(C4xQ8) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).57(C2xQ8) | 192,206 |
(C2xC6).58(C2xQ8) = Dic3:C42 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).58(C2xQ8) | 192,208 |
(C2xC6).59(C2xQ8) = C3:(C42:8C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).59(C2xQ8) | 192,209 |
(C2xC6).60(C2xQ8) = C6.(C4xD4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).60(C2xQ8) | 192,211 |
(C2xC6).61(C2xQ8) = C2.(C4xD12) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).61(C2xQ8) | 192,212 |
(C2xC6).62(C2xQ8) = (C2xC4):Dic6 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).62(C2xQ8) | 192,215 |
(C2xC6).63(C2xQ8) = C6.(C4:Q8) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).63(C2xQ8) | 192,216 |
(C2xC6).64(C2xQ8) = (C2xDic3).9D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).64(C2xQ8) | 192,217 |
(C2xC6).65(C2xQ8) = (C2xC4).17D12 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).65(C2xQ8) | 192,218 |
(C2xC6).66(C2xQ8) = S3xC2.C42 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).66(C2xQ8) | 192,222 |
(C2xC6).67(C2xQ8) = D6:(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).67(C2xQ8) | 192,226 |
(C2xC6).68(C2xQ8) = D6:C4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).68(C2xQ8) | 192,227 |
(C2xC6).69(C2xQ8) = (C22xS3):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).69(C2xQ8) | 192,232 |
(C2xC6).70(C2xQ8) = (C22xC4).37D6 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).70(C2xQ8) | 192,235 |
(C2xC6).71(C2xQ8) = (C2xC12).33D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).71(C2xQ8) | 192,236 |
(C2xC6).72(C2xQ8) = C12:(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).72(C2xQ8) | 192,531 |
(C2xC6).73(C2xQ8) = C4.(D6:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).73(C2xQ8) | 192,532 |
(C2xC6).74(C2xQ8) = Dic3xC4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).74(C2xQ8) | 192,533 |
(C2xC6).75(C2xQ8) = (C4xDic3):8C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).75(C2xQ8) | 192,534 |
(C2xC6).76(C2xQ8) = Dic3:(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).76(C2xQ8) | 192,535 |
(C2xC6).77(C2xQ8) = C6.67(C4xD4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).77(C2xQ8) | 192,537 |
(C2xC6).78(C2xQ8) = (C2xDic3):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).78(C2xQ8) | 192,538 |
(C2xC6).79(C2xQ8) = C4:C4:5Dic3 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).79(C2xQ8) | 192,539 |
(C2xC6).80(C2xQ8) = (C2xC4).44D12 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).80(C2xQ8) | 192,540 |
(C2xC6).81(C2xQ8) = (C2xDic3).Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).81(C2xQ8) | 192,542 |
(C2xC6).82(C2xQ8) = (C2xC12).288D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).82(C2xQ8) | 192,544 |
(C2xC6).83(C2xQ8) = C4:(D6:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).83(C2xQ8) | 192,546 |
(C2xC6).84(C2xQ8) = D6:C4:6C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).84(C2xQ8) | 192,548 |
(C2xC6).85(C2xQ8) = (C2xC12).290D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).85(C2xQ8) | 192,552 |
(C2xC6).86(C2xQ8) = (C2xC12).56D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).86(C2xQ8) | 192,553 |
(C2xC6).87(C2xQ8) = (C6xQ8):7C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).87(C2xQ8) | 192,788 |
(C2xC6).88(C2xQ8) = C22.52(S3xQ8) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).88(C2xQ8) | 192,789 |
(C2xC6).89(C2xQ8) = (C22xQ8):9S3 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).89(C2xQ8) | 192,790 |
(C2xC6).90(C2xQ8) = C2xDic6:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).90(C2xQ8) | 192,1055 |
(C2xC6).91(C2xQ8) = C2xDic3.Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).91(C2xQ8) | 192,1057 |
(C2xC6).92(C2xQ8) = C2xS3xC4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).92(C2xQ8) | 192,1060 |
(C2xC6).93(C2xQ8) = C2xD6:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).93(C2xQ8) | 192,1067 |
(C2xC6).94(C2xQ8) = C2xC4.D12 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).94(C2xQ8) | 192,1068 |
(C2xC6).95(C2xQ8) = C6.102+ 1+4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).95(C2xQ8) | 192,1070 |
(C2xC6).96(C2xQ8) = C2xDic3:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).96(C2xQ8) | 192,1369 |
(C2xC6).97(C2xQ8) = C2xQ8xDic3 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).97(C2xQ8) | 192,1370 |
(C2xC6).98(C2xQ8) = C2xD6:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).98(C2xQ8) | 192,1372 |
(C2xC6).99(C2xQ8) = C6xC2.C42 | central extension (φ=1) | 192 | | (C2xC6).99(C2xQ8) | 192,808 |
(C2xC6).100(C2xQ8) = C12xC4:C4 | central extension (φ=1) | 192 | | (C2xC6).100(C2xQ8) | 192,811 |
(C2xC6).101(C2xQ8) = C3xC23.7Q8 | central extension (φ=1) | 96 | | (C2xC6).101(C2xQ8) | 192,813 |
(C2xC6).102(C2xQ8) = C3xC42:8C4 | central extension (φ=1) | 192 | | (C2xC6).102(C2xQ8) | 192,815 |
(C2xC6).103(C2xQ8) = C3xC42:9C4 | central extension (φ=1) | 192 | | (C2xC6).103(C2xQ8) | 192,817 |
(C2xC6).104(C2xQ8) = C3xC23.8Q8 | central extension (φ=1) | 96 | | (C2xC6).104(C2xQ8) | 192,818 |
(C2xC6).105(C2xQ8) = C3xC23.63C23 | central extension (φ=1) | 192 | | (C2xC6).105(C2xQ8) | 192,820 |
(C2xC6).106(C2xQ8) = C3xC23.65C23 | central extension (φ=1) | 192 | | (C2xC6).106(C2xQ8) | 192,822 |
(C2xC6).107(C2xQ8) = C3xC23.67C23 | central extension (φ=1) | 192 | | (C2xC6).107(C2xQ8) | 192,824 |
(C2xC6).108(C2xQ8) = C3xC23:Q8 | central extension (φ=1) | 96 | | (C2xC6).108(C2xQ8) | 192,826 |
(C2xC6).109(C2xQ8) = C3xC23.78C23 | central extension (φ=1) | 192 | | (C2xC6).109(C2xQ8) | 192,828 |
(C2xC6).110(C2xQ8) = C3xC23.Q8 | central extension (φ=1) | 96 | | (C2xC6).110(C2xQ8) | 192,829 |
(C2xC6).111(C2xQ8) = C3xC23.81C23 | central extension (φ=1) | 192 | | (C2xC6).111(C2xQ8) | 192,831 |
(C2xC6).112(C2xQ8) = C3xC23.4Q8 | central extension (φ=1) | 96 | | (C2xC6).112(C2xQ8) | 192,832 |
(C2xC6).113(C2xQ8) = C3xC23.83C23 | central extension (φ=1) | 192 | | (C2xC6).113(C2xQ8) | 192,833 |
(C2xC6).114(C2xQ8) = C2xC6xC4:C4 | central extension (φ=1) | 192 | | (C2xC6).114(C2xQ8) | 192,1402 |
(C2xC6).115(C2xQ8) = Q8xC2xC12 | central extension (φ=1) | 192 | | (C2xC6).115(C2xQ8) | 192,1405 |
(C2xC6).116(C2xQ8) = C6xC42.C2 | central extension (φ=1) | 192 | | (C2xC6).116(C2xQ8) | 192,1416 |
(C2xC6).117(C2xQ8) = C6xC4:Q8 | central extension (φ=1) | 192 | | (C2xC6).117(C2xQ8) | 192,1420 |