extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C2×Q8) = S3×C8.C4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).1(C2xQ8) | 192,451 |
(C2×C6).2(C2×Q8) = M4(2).25D6 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).2(C2xQ8) | 192,452 |
(C2×C6).3(C2×Q8) = D4⋊5Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).3(C2xQ8) | 192,1098 |
(C2×C6).4(C2×Q8) = D4⋊6Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).4(C2xQ8) | 192,1102 |
(C2×C6).5(C2×Q8) = (Q8×Dic3)⋊C2 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).5(C2xQ8) | 192,1181 |
(C2×C6).6(C2×Q8) = C6.752- 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).6(C2xQ8) | 192,1182 |
(C2×C6).7(C2×Q8) = C6.512+ 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).7(C2xQ8) | 192,1193 |
(C2×C6).8(C2×Q8) = C6.1182+ 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).8(C2xQ8) | 192,1194 |
(C2×C6).9(C2×Q8) = C6.522+ 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).9(C2xQ8) | 192,1195 |
(C2×C6).10(C2×Q8) = C2×C12.53D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).10(C2xQ8) | 192,682 |
(C2×C6).11(C2×Q8) = C23.8Dic6 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).11(C2xQ8) | 192,683 |
(C2×C6).12(C2×Q8) = C42.88D6 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).12(C2xQ8) | 192,1076 |
(C2×C6).13(C2×Q8) = C42.90D6 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).13(C2xQ8) | 192,1078 |
(C2×C6).14(C2×Q8) = C6×C8.C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).14(C2xQ8) | 192,862 |
(C2×C6).15(C2×Q8) = C3×M4(2).C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).15(C2xQ8) | 192,863 |
(C2×C6).16(C2×Q8) = C3×C23.37C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).16(C2xQ8) | 192,1422 |
(C2×C6).17(C2×Q8) = C3×C23⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).17(C2xQ8) | 192,1432 |
(C2×C6).18(C2×Q8) = C3×C23.41C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).18(C2xQ8) | 192,1433 |
(C2×C6).19(C2×Q8) = C2.(C4×Dic6) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).19(C2xQ8) | 192,213 |
(C2×C6).20(C2×Q8) = Dic3⋊C4⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).20(C2xQ8) | 192,214 |
(C2×C6).21(C2×Q8) = (C2×C4).Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).21(C2xQ8) | 192,219 |
(C2×C6).22(C2×Q8) = (C22×C4).85D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).22(C2xQ8) | 192,220 |
(C2×C6).23(C2×Q8) = C12⋊4(C4⋊C4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).23(C2xQ8) | 192,487 |
(C2×C6).24(C2×Q8) = (C2×Dic6)⋊7C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).24(C2xQ8) | 192,488 |
(C2×C6).25(C2×Q8) = C4×Dic3⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).25(C2xQ8) | 192,490 |
(C2×C6).26(C2×Q8) = (C2×C42).6S3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).26(C2xQ8) | 192,492 |
(C2×C6).27(C2×Q8) = C4×C4⋊Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).27(C2xQ8) | 192,493 |
(C2×C6).28(C2×Q8) = C42⋊10Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).28(C2xQ8) | 192,494 |
(C2×C6).29(C2×Q8) = C42⋊11Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).29(C2xQ8) | 192,495 |
(C2×C6).30(C2×Q8) = C24.55D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).30(C2xQ8) | 192,501 |
(C2×C6).31(C2×Q8) = C24.57D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).31(C2xQ8) | 192,505 |
(C2×C6).32(C2×Q8) = C23⋊2Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).32(C2xQ8) | 192,506 |
(C2×C6).33(C2×Q8) = C24.17D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).33(C2xQ8) | 192,507 |
(C2×C6).34(C2×Q8) = C24.18D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).34(C2xQ8) | 192,508 |
(C2×C6).35(C2×Q8) = C24.58D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).35(C2xQ8) | 192,509 |
(C2×C6).36(C2×Q8) = (C4×Dic3)⋊9C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).36(C2xQ8) | 192,536 |
(C2×C6).37(C2×Q8) = (C2×C12).54D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).37(C2xQ8) | 192,541 |
(C2×C6).38(C2×Q8) = C4⋊C4⋊6Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).38(C2xQ8) | 192,543 |
(C2×C6).39(C2×Q8) = (C2×C12).55D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).39(C2xQ8) | 192,545 |
(C2×C6).40(C2×Q8) = C2×C24.C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).40(C2xQ8) | 192,666 |
(C2×C6).41(C2×Q8) = C23.9Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).41(C2xQ8) | 192,684 |
(C2×C6).42(C2×Q8) = C2×C6.C42 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).42(C2xQ8) | 192,767 |
(C2×C6).43(C2×Q8) = C24.73D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).43(C2xQ8) | 192,769 |
(C2×C6).44(C2×Q8) = C24.75D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).44(C2xQ8) | 192,771 |
(C2×C6).45(C2×Q8) = C2×C4×Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).45(C2xQ8) | 192,1026 |
(C2×C6).46(C2×Q8) = C2×C12⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).46(C2xQ8) | 192,1027 |
(C2×C6).47(C2×Q8) = C2×C12.6Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).47(C2xQ8) | 192,1028 |
(C2×C6).48(C2×Q8) = C42.274D6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).48(C2xQ8) | 192,1029 |
(C2×C6).49(C2×Q8) = C23⋊3Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).49(C2xQ8) | 192,1042 |
(C2×C6).50(C2×Q8) = C2×C12⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).50(C2xQ8) | 192,1056 |
(C2×C6).51(C2×Q8) = C2×C4.Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).51(C2xQ8) | 192,1058 |
(C2×C6).52(C2×Q8) = C6.72+ 1+4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).52(C2xQ8) | 192,1059 |
(C2×C6).53(C2×Q8) = C22×Dic3⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).53(C2xQ8) | 192,1342 |
(C2×C6).54(C2×Q8) = C22×C4⋊Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).54(C2xQ8) | 192,1344 |
(C2×C6).55(C2×Q8) = C3×D4⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).55(C2xQ8) | 192,1443 |
(C2×C6).56(C2×Q8) = (C2×C12)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).56(C2xQ8) | 192,205 |
(C2×C6).57(C2×Q8) = C6.(C4×Q8) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).57(C2xQ8) | 192,206 |
(C2×C6).58(C2×Q8) = Dic3⋊C42 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).58(C2xQ8) | 192,208 |
(C2×C6).59(C2×Q8) = C3⋊(C42⋊8C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).59(C2xQ8) | 192,209 |
(C2×C6).60(C2×Q8) = C6.(C4×D4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).60(C2xQ8) | 192,211 |
(C2×C6).61(C2×Q8) = C2.(C4×D12) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).61(C2xQ8) | 192,212 |
(C2×C6).62(C2×Q8) = (C2×C4)⋊Dic6 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).62(C2xQ8) | 192,215 |
(C2×C6).63(C2×Q8) = C6.(C4⋊Q8) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).63(C2xQ8) | 192,216 |
(C2×C6).64(C2×Q8) = (C2×Dic3).9D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).64(C2xQ8) | 192,217 |
(C2×C6).65(C2×Q8) = (C2×C4).17D12 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).65(C2xQ8) | 192,218 |
(C2×C6).66(C2×Q8) = S3×C2.C42 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).66(C2xQ8) | 192,222 |
(C2×C6).67(C2×Q8) = D6⋊(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).67(C2xQ8) | 192,226 |
(C2×C6).68(C2×Q8) = D6⋊C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).68(C2xQ8) | 192,227 |
(C2×C6).69(C2×Q8) = (C22×S3)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).69(C2xQ8) | 192,232 |
(C2×C6).70(C2×Q8) = (C22×C4).37D6 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).70(C2xQ8) | 192,235 |
(C2×C6).71(C2×Q8) = (C2×C12).33D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).71(C2xQ8) | 192,236 |
(C2×C6).72(C2×Q8) = C12⋊(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).72(C2xQ8) | 192,531 |
(C2×C6).73(C2×Q8) = C4.(D6⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).73(C2xQ8) | 192,532 |
(C2×C6).74(C2×Q8) = Dic3×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).74(C2xQ8) | 192,533 |
(C2×C6).75(C2×Q8) = (C4×Dic3)⋊8C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).75(C2xQ8) | 192,534 |
(C2×C6).76(C2×Q8) = Dic3⋊(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).76(C2xQ8) | 192,535 |
(C2×C6).77(C2×Q8) = C6.67(C4×D4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).77(C2xQ8) | 192,537 |
(C2×C6).78(C2×Q8) = (C2×Dic3)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).78(C2xQ8) | 192,538 |
(C2×C6).79(C2×Q8) = C4⋊C4⋊5Dic3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).79(C2xQ8) | 192,539 |
(C2×C6).80(C2×Q8) = (C2×C4).44D12 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).80(C2xQ8) | 192,540 |
(C2×C6).81(C2×Q8) = (C2×Dic3).Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).81(C2xQ8) | 192,542 |
(C2×C6).82(C2×Q8) = (C2×C12).288D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).82(C2xQ8) | 192,544 |
(C2×C6).83(C2×Q8) = C4⋊(D6⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).83(C2xQ8) | 192,546 |
(C2×C6).84(C2×Q8) = D6⋊C4⋊6C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).84(C2xQ8) | 192,548 |
(C2×C6).85(C2×Q8) = (C2×C12).290D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).85(C2xQ8) | 192,552 |
(C2×C6).86(C2×Q8) = (C2×C12).56D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).86(C2xQ8) | 192,553 |
(C2×C6).87(C2×Q8) = (C6×Q8)⋊7C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).87(C2xQ8) | 192,788 |
(C2×C6).88(C2×Q8) = C22.52(S3×Q8) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).88(C2xQ8) | 192,789 |
(C2×C6).89(C2×Q8) = (C22×Q8)⋊9S3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).89(C2xQ8) | 192,790 |
(C2×C6).90(C2×Q8) = C2×Dic6⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).90(C2xQ8) | 192,1055 |
(C2×C6).91(C2×Q8) = C2×Dic3.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).91(C2xQ8) | 192,1057 |
(C2×C6).92(C2×Q8) = C2×S3×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).92(C2xQ8) | 192,1060 |
(C2×C6).93(C2×Q8) = C2×D6⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).93(C2xQ8) | 192,1067 |
(C2×C6).94(C2×Q8) = C2×C4.D12 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).94(C2xQ8) | 192,1068 |
(C2×C6).95(C2×Q8) = C6.102+ 1+4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).95(C2xQ8) | 192,1070 |
(C2×C6).96(C2×Q8) = C2×Dic3⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).96(C2xQ8) | 192,1369 |
(C2×C6).97(C2×Q8) = C2×Q8×Dic3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).97(C2xQ8) | 192,1370 |
(C2×C6).98(C2×Q8) = C2×D6⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).98(C2xQ8) | 192,1372 |
(C2×C6).99(C2×Q8) = C6×C2.C42 | central extension (φ=1) | 192 | | (C2xC6).99(C2xQ8) | 192,808 |
(C2×C6).100(C2×Q8) = C12×C4⋊C4 | central extension (φ=1) | 192 | | (C2xC6).100(C2xQ8) | 192,811 |
(C2×C6).101(C2×Q8) = C3×C23.7Q8 | central extension (φ=1) | 96 | | (C2xC6).101(C2xQ8) | 192,813 |
(C2×C6).102(C2×Q8) = C3×C42⋊8C4 | central extension (φ=1) | 192 | | (C2xC6).102(C2xQ8) | 192,815 |
(C2×C6).103(C2×Q8) = C3×C42⋊9C4 | central extension (φ=1) | 192 | | (C2xC6).103(C2xQ8) | 192,817 |
(C2×C6).104(C2×Q8) = C3×C23.8Q8 | central extension (φ=1) | 96 | | (C2xC6).104(C2xQ8) | 192,818 |
(C2×C6).105(C2×Q8) = C3×C23.63C23 | central extension (φ=1) | 192 | | (C2xC6).105(C2xQ8) | 192,820 |
(C2×C6).106(C2×Q8) = C3×C23.65C23 | central extension (φ=1) | 192 | | (C2xC6).106(C2xQ8) | 192,822 |
(C2×C6).107(C2×Q8) = C3×C23.67C23 | central extension (φ=1) | 192 | | (C2xC6).107(C2xQ8) | 192,824 |
(C2×C6).108(C2×Q8) = C3×C23⋊Q8 | central extension (φ=1) | 96 | | (C2xC6).108(C2xQ8) | 192,826 |
(C2×C6).109(C2×Q8) = C3×C23.78C23 | central extension (φ=1) | 192 | | (C2xC6).109(C2xQ8) | 192,828 |
(C2×C6).110(C2×Q8) = C3×C23.Q8 | central extension (φ=1) | 96 | | (C2xC6).110(C2xQ8) | 192,829 |
(C2×C6).111(C2×Q8) = C3×C23.81C23 | central extension (φ=1) | 192 | | (C2xC6).111(C2xQ8) | 192,831 |
(C2×C6).112(C2×Q8) = C3×C23.4Q8 | central extension (φ=1) | 96 | | (C2xC6).112(C2xQ8) | 192,832 |
(C2×C6).113(C2×Q8) = C3×C23.83C23 | central extension (φ=1) | 192 | | (C2xC6).113(C2xQ8) | 192,833 |
(C2×C6).114(C2×Q8) = C2×C6×C4⋊C4 | central extension (φ=1) | 192 | | (C2xC6).114(C2xQ8) | 192,1402 |
(C2×C6).115(C2×Q8) = Q8×C2×C12 | central extension (φ=1) | 192 | | (C2xC6).115(C2xQ8) | 192,1405 |
(C2×C6).116(C2×Q8) = C6×C42.C2 | central extension (φ=1) | 192 | | (C2xC6).116(C2xQ8) | 192,1416 |
(C2×C6).117(C2×Q8) = C6×C4⋊Q8 | central extension (φ=1) | 192 | | (C2xC6).117(C2xQ8) | 192,1420 |