Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C2xQ8

Direct product G=NxQ with N=C2xC6 and Q=C2xQ8
dρLabelID
Q8xC22xC6192Q8xC2^2xC6192,1532

Semidirect products G=N:Q with N=C2xC6 and Q=C2xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC6):1(C2xQ8) = D4xDic6φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6):1(C2xQ8)192,1096
(C2xC6):2(C2xQ8) = S3xC22:Q8φ: C2xQ8/C4C22 ⊆ Aut C2xC648(C2xC6):2(C2xQ8)192,1185
(C2xC6):3(C2xQ8) = Dic6:21D4φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6):3(C2xQ8)192,1191
(C2xC6):4(C2xQ8) = C2xDic3.D4φ: C2xQ8/C22C22 ⊆ Aut C2xC696(C2xC6):4(C2xQ8)192,1040
(C2xC6):5(C2xQ8) = C6xC22:Q8φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6):5(C2xQ8)192,1412
(C2xC6):6(C2xQ8) = C2xC12.48D4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6):6(C2xQ8)192,1343
(C2xC6):7(C2xQ8) = C23xDic6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6):7(C2xQ8)192,1510
(C2xC6):8(C2xQ8) = C3xD4xQ8φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6):8(C2xQ8)192,1438
(C2xC6):9(C2xQ8) = Q8xC3:D4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6):9(C2xQ8)192,1374
(C2xC6):10(C2xQ8) = C22xS3xQ8φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6):10(C2xQ8)192,1517

Non-split extensions G=N.Q with N=C2xC6 and Q=C2xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC6).1(C2xQ8) = S3xC8.C4φ: C2xQ8/C4C22 ⊆ Aut C2xC6484(C2xC6).1(C2xQ8)192,451
(C2xC6).2(C2xQ8) = M4(2).25D6φ: C2xQ8/C4C22 ⊆ Aut C2xC6484(C2xC6).2(C2xQ8)192,452
(C2xC6).3(C2xQ8) = D4:5Dic6φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6).3(C2xQ8)192,1098
(C2xC6).4(C2xQ8) = D4:6Dic6φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6).4(C2xQ8)192,1102
(C2xC6).5(C2xQ8) = (Q8xDic3):C2φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6).5(C2xQ8)192,1181
(C2xC6).6(C2xQ8) = C6.752- 1+4φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6).6(C2xQ8)192,1182
(C2xC6).7(C2xQ8) = C6.512+ 1+4φ: C2xQ8/C4C22 ⊆ Aut C2xC648(C2xC6).7(C2xQ8)192,1193
(C2xC6).8(C2xQ8) = C6.1182+ 1+4φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6).8(C2xQ8)192,1194
(C2xC6).9(C2xQ8) = C6.522+ 1+4φ: C2xQ8/C4C22 ⊆ Aut C2xC696(C2xC6).9(C2xQ8)192,1195
(C2xC6).10(C2xQ8) = C2xC12.53D4φ: C2xQ8/C22C22 ⊆ Aut C2xC696(C2xC6).10(C2xQ8)192,682
(C2xC6).11(C2xQ8) = C23.8Dic6φ: C2xQ8/C22C22 ⊆ Aut C2xC6484(C2xC6).11(C2xQ8)192,683
(C2xC6).12(C2xQ8) = C42.88D6φ: C2xQ8/C22C22 ⊆ Aut C2xC696(C2xC6).12(C2xQ8)192,1076
(C2xC6).13(C2xQ8) = C42.90D6φ: C2xQ8/C22C22 ⊆ Aut C2xC696(C2xC6).13(C2xQ8)192,1078
(C2xC6).14(C2xQ8) = C6xC8.C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).14(C2xQ8)192,862
(C2xC6).15(C2xQ8) = C3xM4(2).C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6484(C2xC6).15(C2xQ8)192,863
(C2xC6).16(C2xQ8) = C3xC23.37C23φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).16(C2xQ8)192,1422
(C2xC6).17(C2xQ8) = C3xC23:2Q8φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC648(C2xC6).17(C2xQ8)192,1432
(C2xC6).18(C2xQ8) = C3xC23.41C23φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).18(C2xQ8)192,1433
(C2xC6).19(C2xQ8) = C2.(C4xDic6)φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).19(C2xQ8)192,213
(C2xC6).20(C2xQ8) = Dic3:C4:C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).20(C2xQ8)192,214
(C2xC6).21(C2xQ8) = (C2xC4).Dic6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).21(C2xQ8)192,219
(C2xC6).22(C2xQ8) = (C22xC4).85D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).22(C2xQ8)192,220
(C2xC6).23(C2xQ8) = C12:4(C4:C4)φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).23(C2xQ8)192,487
(C2xC6).24(C2xQ8) = (C2xDic6):7C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).24(C2xQ8)192,488
(C2xC6).25(C2xQ8) = C4xDic3:C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).25(C2xQ8)192,490
(C2xC6).26(C2xQ8) = (C2xC42).6S3φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).26(C2xQ8)192,492
(C2xC6).27(C2xQ8) = C4xC4:Dic3φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).27(C2xQ8)192,493
(C2xC6).28(C2xQ8) = C42:10Dic3φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).28(C2xQ8)192,494
(C2xC6).29(C2xQ8) = C42:11Dic3φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).29(C2xQ8)192,495
(C2xC6).30(C2xQ8) = C24.55D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).30(C2xQ8)192,501
(C2xC6).31(C2xQ8) = C24.57D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).31(C2xQ8)192,505
(C2xC6).32(C2xQ8) = C23:2Dic6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).32(C2xQ8)192,506
(C2xC6).33(C2xQ8) = C24.17D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).33(C2xQ8)192,507
(C2xC6).34(C2xQ8) = C24.18D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).34(C2xQ8)192,508
(C2xC6).35(C2xQ8) = C24.58D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).35(C2xQ8)192,509
(C2xC6).36(C2xQ8) = (C4xDic3):9C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).36(C2xQ8)192,536
(C2xC6).37(C2xQ8) = (C2xC12).54D4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).37(C2xQ8)192,541
(C2xC6).38(C2xQ8) = C4:C4:6Dic3φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).38(C2xQ8)192,543
(C2xC6).39(C2xQ8) = (C2xC12).55D4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).39(C2xQ8)192,545
(C2xC6).40(C2xQ8) = C2xC24.C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).40(C2xQ8)192,666
(C2xC6).41(C2xQ8) = C23.9Dic6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6484(C2xC6).41(C2xQ8)192,684
(C2xC6).42(C2xQ8) = C2xC6.C42φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).42(C2xQ8)192,767
(C2xC6).43(C2xQ8) = C24.73D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).43(C2xQ8)192,769
(C2xC6).44(C2xQ8) = C24.75D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).44(C2xQ8)192,771
(C2xC6).45(C2xQ8) = C2xC4xDic6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).45(C2xQ8)192,1026
(C2xC6).46(C2xQ8) = C2xC12:2Q8φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).46(C2xQ8)192,1027
(C2xC6).47(C2xQ8) = C2xC12.6Q8φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).47(C2xQ8)192,1028
(C2xC6).48(C2xQ8) = C42.274D6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).48(C2xQ8)192,1029
(C2xC6).49(C2xQ8) = C23:3Dic6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC648(C2xC6).49(C2xQ8)192,1042
(C2xC6).50(C2xQ8) = C2xC12:Q8φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).50(C2xQ8)192,1056
(C2xC6).51(C2xQ8) = C2xC4.Dic6φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).51(C2xQ8)192,1058
(C2xC6).52(C2xQ8) = C6.72+ 1+4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).52(C2xQ8)192,1059
(C2xC6).53(C2xQ8) = C22xDic3:C4φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).53(C2xQ8)192,1342
(C2xC6).54(C2xQ8) = C22xC4:Dic3φ: C2xQ8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).54(C2xQ8)192,1344
(C2xC6).55(C2xQ8) = C3xD4:3Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).55(C2xQ8)192,1443
(C2xC6).56(C2xQ8) = (C2xC12):Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).56(C2xQ8)192,205
(C2xC6).57(C2xQ8) = C6.(C4xQ8)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).57(C2xQ8)192,206
(C2xC6).58(C2xQ8) = Dic3:C42φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).58(C2xQ8)192,208
(C2xC6).59(C2xQ8) = C3:(C42:8C4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).59(C2xQ8)192,209
(C2xC6).60(C2xQ8) = C6.(C4xD4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).60(C2xQ8)192,211
(C2xC6).61(C2xQ8) = C2.(C4xD12)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).61(C2xQ8)192,212
(C2xC6).62(C2xQ8) = (C2xC4):Dic6φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).62(C2xQ8)192,215
(C2xC6).63(C2xQ8) = C6.(C4:Q8)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).63(C2xQ8)192,216
(C2xC6).64(C2xQ8) = (C2xDic3).9D4φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).64(C2xQ8)192,217
(C2xC6).65(C2xQ8) = (C2xC4).17D12φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).65(C2xQ8)192,218
(C2xC6).66(C2xQ8) = S3xC2.C42φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).66(C2xQ8)192,222
(C2xC6).67(C2xQ8) = D6:(C4:C4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).67(C2xQ8)192,226
(C2xC6).68(C2xQ8) = D6:C4:C4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).68(C2xQ8)192,227
(C2xC6).69(C2xQ8) = (C22xS3):Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).69(C2xQ8)192,232
(C2xC6).70(C2xQ8) = (C22xC4).37D6φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).70(C2xQ8)192,235
(C2xC6).71(C2xQ8) = (C2xC12).33D4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).71(C2xQ8)192,236
(C2xC6).72(C2xQ8) = C12:(C4:C4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).72(C2xQ8)192,531
(C2xC6).73(C2xQ8) = C4.(D6:C4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).73(C2xQ8)192,532
(C2xC6).74(C2xQ8) = Dic3xC4:C4φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).74(C2xQ8)192,533
(C2xC6).75(C2xQ8) = (C4xDic3):8C4φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).75(C2xQ8)192,534
(C2xC6).76(C2xQ8) = Dic3:(C4:C4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).76(C2xQ8)192,535
(C2xC6).77(C2xQ8) = C6.67(C4xD4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).77(C2xQ8)192,537
(C2xC6).78(C2xQ8) = (C2xDic3):Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).78(C2xQ8)192,538
(C2xC6).79(C2xQ8) = C4:C4:5Dic3φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).79(C2xQ8)192,539
(C2xC6).80(C2xQ8) = (C2xC4).44D12φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).80(C2xQ8)192,540
(C2xC6).81(C2xQ8) = (C2xDic3).Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).81(C2xQ8)192,542
(C2xC6).82(C2xQ8) = (C2xC12).288D4φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).82(C2xQ8)192,544
(C2xC6).83(C2xQ8) = C4:(D6:C4)φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).83(C2xQ8)192,546
(C2xC6).84(C2xQ8) = D6:C4:6C4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).84(C2xQ8)192,548
(C2xC6).85(C2xQ8) = (C2xC12).290D4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).85(C2xQ8)192,552
(C2xC6).86(C2xQ8) = (C2xC12).56D4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).86(C2xQ8)192,553
(C2xC6).87(C2xQ8) = (C6xQ8):7C4φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).87(C2xQ8)192,788
(C2xC6).88(C2xQ8) = C22.52(S3xQ8)φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).88(C2xQ8)192,789
(C2xC6).89(C2xQ8) = (C22xQ8):9S3φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).89(C2xQ8)192,790
(C2xC6).90(C2xQ8) = C2xDic6:C4φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).90(C2xQ8)192,1055
(C2xC6).91(C2xQ8) = C2xDic3.Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).91(C2xQ8)192,1057
(C2xC6).92(C2xQ8) = C2xS3xC4:C4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).92(C2xQ8)192,1060
(C2xC6).93(C2xQ8) = C2xD6:Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).93(C2xQ8)192,1067
(C2xC6).94(C2xQ8) = C2xC4.D12φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).94(C2xQ8)192,1068
(C2xC6).95(C2xQ8) = C6.102+ 1+4φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).95(C2xQ8)192,1070
(C2xC6).96(C2xQ8) = C2xDic3:Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).96(C2xQ8)192,1369
(C2xC6).97(C2xQ8) = C2xQ8xDic3φ: C2xQ8/Q8C2 ⊆ Aut C2xC6192(C2xC6).97(C2xQ8)192,1370
(C2xC6).98(C2xQ8) = C2xD6:3Q8φ: C2xQ8/Q8C2 ⊆ Aut C2xC696(C2xC6).98(C2xQ8)192,1372
(C2xC6).99(C2xQ8) = C6xC2.C42central extension (φ=1)192(C2xC6).99(C2xQ8)192,808
(C2xC6).100(C2xQ8) = C12xC4:C4central extension (φ=1)192(C2xC6).100(C2xQ8)192,811
(C2xC6).101(C2xQ8) = C3xC23.7Q8central extension (φ=1)96(C2xC6).101(C2xQ8)192,813
(C2xC6).102(C2xQ8) = C3xC42:8C4central extension (φ=1)192(C2xC6).102(C2xQ8)192,815
(C2xC6).103(C2xQ8) = C3xC42:9C4central extension (φ=1)192(C2xC6).103(C2xQ8)192,817
(C2xC6).104(C2xQ8) = C3xC23.8Q8central extension (φ=1)96(C2xC6).104(C2xQ8)192,818
(C2xC6).105(C2xQ8) = C3xC23.63C23central extension (φ=1)192(C2xC6).105(C2xQ8)192,820
(C2xC6).106(C2xQ8) = C3xC23.65C23central extension (φ=1)192(C2xC6).106(C2xQ8)192,822
(C2xC6).107(C2xQ8) = C3xC23.67C23central extension (φ=1)192(C2xC6).107(C2xQ8)192,824
(C2xC6).108(C2xQ8) = C3xC23:Q8central extension (φ=1)96(C2xC6).108(C2xQ8)192,826
(C2xC6).109(C2xQ8) = C3xC23.78C23central extension (φ=1)192(C2xC6).109(C2xQ8)192,828
(C2xC6).110(C2xQ8) = C3xC23.Q8central extension (φ=1)96(C2xC6).110(C2xQ8)192,829
(C2xC6).111(C2xQ8) = C3xC23.81C23central extension (φ=1)192(C2xC6).111(C2xQ8)192,831
(C2xC6).112(C2xQ8) = C3xC23.4Q8central extension (φ=1)96(C2xC6).112(C2xQ8)192,832
(C2xC6).113(C2xQ8) = C3xC23.83C23central extension (φ=1)192(C2xC6).113(C2xQ8)192,833
(C2xC6).114(C2xQ8) = C2xC6xC4:C4central extension (φ=1)192(C2xC6).114(C2xQ8)192,1402
(C2xC6).115(C2xQ8) = Q8xC2xC12central extension (φ=1)192(C2xC6).115(C2xQ8)192,1405
(C2xC6).116(C2xQ8) = C6xC42.C2central extension (φ=1)192(C2xC6).116(C2xQ8)192,1416
(C2xC6).117(C2xQ8) = C6xC4:Q8central extension (φ=1)192(C2xC6).117(C2xQ8)192,1420

׿
x
:
Z
F
o
wr
Q
<