Copied to
clipboard

G = C6.512+ 1+4order 192 = 26·3

51st non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C2xD4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.512+ 1+4, C4:C4:11D6, (C2xQ8):8D6, D6.2(C2xQ8), C22:Q8:11S3, (C6xQ8):8C22, (C22xS3):3Q8, D6:Q8:21C2, D6:3Q8:16C2, C4.D12:27C2, C22.7(S3xQ8), C22:C4.59D6, C3:2(C23:2Q8), C2.35(D4oD12), C6.36(C22xQ8), (C2xC12).57C23, (C2xC6).178C24, C4:Dic3:36C22, (C2xDic6):9C22, (C22xC4).256D6, C12.48D4:46C2, C2.53(D4:6D6), Dic3:C4:18C22, D6:C4.147C22, Dic3.D4:24C2, (S3xC23).53C22, (C22xC6).206C23, C23.201(C22xS3), C22.199(S3xC23), (C2xDic3).89C23, (C22xS3).200C23, (C22xC12).315C22, C6.D4.34C22, (C22xDic3).119C22, C2.19(C2xS3xQ8), (C2xC6).7(C2xQ8), (C3xC4:C4):20C22, (C2xD6:C4).20C2, (S3xC22:C4).2C2, (S3xC2xC4).98C22, (C3xC22:Q8):14C2, (C2xC4).183(C22xS3), (C3xC22:C4).33C22, SmallGroup(192,1193)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C6.512+ 1+4
C1C3C6C2xC6C22xS3S3xC23S3xC22:C4 — C6.512+ 1+4
C3C2xC6 — C6.512+ 1+4
C1C22C22:Q8

Generators and relations for C6.512+ 1+4
 G = < a,b,c,d,e | a6=b4=c2=1, d2=b2, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=a3b-1, dbd-1=ebe-1=a3b, cd=dc, ce=ec, ede-1=a3b2d >

Subgroups: 672 in 242 conjugacy classes, 103 normal (31 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, Q8, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xQ8, C2xQ8, C24, Dic6, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C2xC12, C3xQ8, C22xS3, C22xS3, C22xC6, C2xC22:C4, C22:Q8, C22:Q8, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C3xC4:C4, C2xDic6, C2xDic6, S3xC2xC4, C22xDic3, C22xC12, C6xQ8, S3xC23, C23:2Q8, Dic3.D4, S3xC22:C4, D6:Q8, C4.D12, C12.48D4, C2xD6:C4, D6:3Q8, C3xC22:Q8, C6.512+ 1+4
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, C24, C22xS3, C22xQ8, 2+ 1+4, S3xQ8, S3xC23, C23:2Q8, D4:6D6, C2xS3xQ8, D4oD12, C6.512+ 1+4

Smallest permutation representation of C6.512+ 1+4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 25 10 34)(2 26 11 35)(3 27 12 36)(4 28 7 31)(5 29 8 32)(6 30 9 33)(13 37 22 46)(14 38 23 47)(15 39 24 48)(16 40 19 43)(17 41 20 44)(18 42 21 45)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)(37 46)(38 47)(39 48)(40 43)(41 44)(42 45)
(1 19 10 16)(2 24 11 15)(3 23 12 14)(4 22 7 13)(5 21 8 18)(6 20 9 17)(25 46 34 37)(26 45 35 42)(27 44 36 41)(28 43 31 40)(29 48 32 39)(30 47 33 38)
(1 16 4 13)(2 17 5 14)(3 18 6 15)(7 22 10 19)(8 23 11 20)(9 24 12 21)(25 37 28 40)(26 38 29 41)(27 39 30 42)(31 43 34 46)(32 44 35 47)(33 45 36 48)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,10,34)(2,26,11,35)(3,27,12,36)(4,28,7,31)(5,29,8,32)(6,30,9,33)(13,37,22,46)(14,38,23,47)(15,39,24,48)(16,40,19,43)(17,41,20,44)(18,42,21,45), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,19,10,16)(2,24,11,15)(3,23,12,14)(4,22,7,13)(5,21,8,18)(6,20,9,17)(25,46,34,37)(26,45,35,42)(27,44,36,41)(28,43,31,40)(29,48,32,39)(30,47,33,38), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,10,34)(2,26,11,35)(3,27,12,36)(4,28,7,31)(5,29,8,32)(6,30,9,33)(13,37,22,46)(14,38,23,47)(15,39,24,48)(16,40,19,43)(17,41,20,44)(18,42,21,45), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,19,10,16)(2,24,11,15)(3,23,12,14)(4,22,7,13)(5,21,8,18)(6,20,9,17)(25,46,34,37)(26,45,35,42)(27,44,36,41)(28,43,31,40)(29,48,32,39)(30,47,33,38), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,25,10,34),(2,26,11,35),(3,27,12,36),(4,28,7,31),(5,29,8,32),(6,30,9,33),(13,37,22,46),(14,38,23,47),(15,39,24,48),(16,40,19,43),(17,41,20,44),(18,42,21,45)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33),(37,46),(38,47),(39,48),(40,43),(41,44),(42,45)], [(1,19,10,16),(2,24,11,15),(3,23,12,14),(4,22,7,13),(5,21,8,18),(6,20,9,17),(25,46,34,37),(26,45,35,42),(27,44,36,41),(28,43,31,40),(29,48,32,39),(30,47,33,38)], [(1,16,4,13),(2,17,5,14),(3,18,6,15),(7,22,10,19),(8,23,11,20),(9,24,12,21),(25,37,28,40),(26,38,29,41),(27,39,30,42),(31,43,34,46),(32,44,35,47),(33,45,36,48)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A···4F4G···4L6A6B6C6D6E12A12B12C12D12E12F12G12H
order122222222234···44···4666661212121212121212
size111122666624···412···122224444448888

36 irreducible representations

dim1111111112222224444
type++++++++++-+++++-+
imageC1C2C2C2C2C2C2C2C2S3Q8D6D6D6D62+ 1+4S3xQ8D4:6D6D4oD12
kernelC6.512+ 1+4Dic3.D4S3xC22:C4D6:Q8C4.D12C12.48D4C2xD6:C4D6:3Q8C3xC22:Q8C22:Q8C22xS3C22:C4C4:C4C22xC4C2xQ8C6C22C2C2
# reps1224211211423112222

Matrix representation of C6.512+ 1+4 in GL6(F13)

1200000
0120000
00121200
001000
00001212
000010
,
4100000
1090000
0000120
0000012
001000
000100
,
100000
010000
001000
000100
0000120
0000012
,
0120000
100000
0091100
002400
0000911
000024
,
0120000
100000
002400
0091100
000024
0000911

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[4,10,0,0,0,0,10,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,12,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,9,2,0,0,0,0,11,4,0,0,0,0,0,0,9,2,0,0,0,0,11,4],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,2,9,0,0,0,0,4,11,0,0,0,0,0,0,2,9,0,0,0,0,4,11] >;

C6.512+ 1+4 in GAP, Magma, Sage, TeX

C_6._{51}2_+^{1+4}
% in TeX

G:=Group("C6.51ES+(2,2)");
// GroupNames label

G:=SmallGroup(192,1193);
// by ID

G=gap.SmallGroup(192,1193);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,184,675,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^4=c^2=1,d^2=b^2,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=a^3*b^-1,d*b*d^-1=e*b*e^-1=a^3*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^3*b^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<