direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C4.D12, C4⋊C4⋊40D6, D6⋊2(C2×Q8), C4.68(C2×D12), C6⋊3(C22⋊Q8), (C22×S3)⋊5Q8, C12.221(C2×D4), (C2×C4).156D12, (C2×C12).201D4, (C2×C6).53C24, C6.10(C22×D4), C22.34(S3×Q8), C6.25(C22×Q8), D6⋊C4.93C22, C4⋊Dic3⋊53C22, (C22×C4).377D6, C2.12(C22×D12), C22.68(C2×D12), (C2×C12).488C23, (C2×Dic6)⋊60C22, (C22×Dic6)⋊14C2, C22.87(S3×C23), (C22×C6).402C23, C23.340(C22×S3), (C2×Dic3).15C23, C22.74(D4⋊2S3), (S3×C23).102C22, (C22×S3).159C23, (C22×C12).218C22, (C22×Dic3).82C22, C2.8(C2×S3×Q8), (C6×C4⋊C4)⋊15C2, (C2×C4⋊C4)⋊18S3, C3⋊3(C2×C22⋊Q8), C6.72(C2×C4○D4), (S3×C22×C4).5C2, (C2×C6).94(C2×Q8), (C3×C4⋊C4)⋊48C22, (C2×D6⋊C4).19C2, (C2×C4⋊Dic3)⋊21C2, (C2×C6).175(C2×D4), C2.15(C2×D4⋊2S3), (S3×C2×C4).244C22, (C2×C6).172(C4○D4), (C2×C4).143(C22×S3), SmallGroup(192,1068)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C4.D12
G = < a,b,c,d | a2=b4=c12=1, d2=b2, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b2c-1 >
Subgroups: 792 in 322 conjugacy classes, 135 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, Q8, C23, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, C22×Dic3, C22×Dic3, C22×C12, C22×C12, S3×C23, C2×C22⋊Q8, C4.D12, C2×C4⋊Dic3, C2×D6⋊C4, C6×C4⋊C4, C22×Dic6, S3×C22×C4, C2×C4.D12
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, C24, D12, C22×S3, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C2×D12, D4⋊2S3, S3×Q8, S3×C23, C2×C22⋊Q8, C4.D12, C22×D12, C2×D4⋊2S3, C2×S3×Q8, C2×C4.D12
(1 69)(2 70)(3 71)(4 72)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 90)(14 91)(15 92)(16 93)(17 94)(18 95)(19 96)(20 85)(21 86)(22 87)(23 88)(24 89)(25 76)(26 77)(27 78)(28 79)(29 80)(30 81)(31 82)(32 83)(33 84)(34 73)(35 74)(36 75)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 50 17 32)(2 33 18 51)(3 52 19 34)(4 35 20 53)(5 54 21 36)(6 25 22 55)(7 56 23 26)(8 27 24 57)(9 58 13 28)(10 29 14 59)(11 60 15 30)(12 31 16 49)(37 68 82 93)(38 94 83 69)(39 70 84 95)(40 96 73 71)(41 72 74 85)(42 86 75 61)(43 62 76 87)(44 88 77 63)(45 64 78 89)(46 90 79 65)(47 66 80 91)(48 92 81 67)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 68 17 93)(2 92 18 67)(3 66 19 91)(4 90 20 65)(5 64 21 89)(6 88 22 63)(7 62 23 87)(8 86 24 61)(9 72 13 85)(10 96 14 71)(11 70 15 95)(12 94 16 69)(25 44 55 77)(26 76 56 43)(27 42 57 75)(28 74 58 41)(29 40 59 73)(30 84 60 39)(31 38 49 83)(32 82 50 37)(33 48 51 81)(34 80 52 47)(35 46 53 79)(36 78 54 45)
G:=sub<Sym(96)| (1,69)(2,70)(3,71)(4,72)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,85)(21,86)(22,87)(23,88)(24,89)(25,76)(26,77)(27,78)(28,79)(29,80)(30,81)(31,82)(32,83)(33,84)(34,73)(35,74)(36,75)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,50,17,32)(2,33,18,51)(3,52,19,34)(4,35,20,53)(5,54,21,36)(6,25,22,55)(7,56,23,26)(8,27,24,57)(9,58,13,28)(10,29,14,59)(11,60,15,30)(12,31,16,49)(37,68,82,93)(38,94,83,69)(39,70,84,95)(40,96,73,71)(41,72,74,85)(42,86,75,61)(43,62,76,87)(44,88,77,63)(45,64,78,89)(46,90,79,65)(47,66,80,91)(48,92,81,67), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,68,17,93)(2,92,18,67)(3,66,19,91)(4,90,20,65)(5,64,21,89)(6,88,22,63)(7,62,23,87)(8,86,24,61)(9,72,13,85)(10,96,14,71)(11,70,15,95)(12,94,16,69)(25,44,55,77)(26,76,56,43)(27,42,57,75)(28,74,58,41)(29,40,59,73)(30,84,60,39)(31,38,49,83)(32,82,50,37)(33,48,51,81)(34,80,52,47)(35,46,53,79)(36,78,54,45)>;
G:=Group( (1,69)(2,70)(3,71)(4,72)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,85)(21,86)(22,87)(23,88)(24,89)(25,76)(26,77)(27,78)(28,79)(29,80)(30,81)(31,82)(32,83)(33,84)(34,73)(35,74)(36,75)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,50,17,32)(2,33,18,51)(3,52,19,34)(4,35,20,53)(5,54,21,36)(6,25,22,55)(7,56,23,26)(8,27,24,57)(9,58,13,28)(10,29,14,59)(11,60,15,30)(12,31,16,49)(37,68,82,93)(38,94,83,69)(39,70,84,95)(40,96,73,71)(41,72,74,85)(42,86,75,61)(43,62,76,87)(44,88,77,63)(45,64,78,89)(46,90,79,65)(47,66,80,91)(48,92,81,67), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,68,17,93)(2,92,18,67)(3,66,19,91)(4,90,20,65)(5,64,21,89)(6,88,22,63)(7,62,23,87)(8,86,24,61)(9,72,13,85)(10,96,14,71)(11,70,15,95)(12,94,16,69)(25,44,55,77)(26,76,56,43)(27,42,57,75)(28,74,58,41)(29,40,59,73)(30,84,60,39)(31,38,49,83)(32,82,50,37)(33,48,51,81)(34,80,52,47)(35,46,53,79)(36,78,54,45) );
G=PermutationGroup([[(1,69),(2,70),(3,71),(4,72),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,90),(14,91),(15,92),(16,93),(17,94),(18,95),(19,96),(20,85),(21,86),(22,87),(23,88),(24,89),(25,76),(26,77),(27,78),(28,79),(29,80),(30,81),(31,82),(32,83),(33,84),(34,73),(35,74),(36,75),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,50,17,32),(2,33,18,51),(3,52,19,34),(4,35,20,53),(5,54,21,36),(6,25,22,55),(7,56,23,26),(8,27,24,57),(9,58,13,28),(10,29,14,59),(11,60,15,30),(12,31,16,49),(37,68,82,93),(38,94,83,69),(39,70,84,95),(40,96,73,71),(41,72,74,85),(42,86,75,61),(43,62,76,87),(44,88,77,63),(45,64,78,89),(46,90,79,65),(47,66,80,91),(48,92,81,67)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,68,17,93),(2,92,18,67),(3,66,19,91),(4,90,20,65),(5,64,21,89),(6,88,22,63),(7,62,23,87),(8,86,24,61),(9,72,13,85),(10,96,14,71),(11,70,15,95),(12,94,16,69),(25,44,55,77),(26,76,56,43),(27,42,57,75),(28,74,58,41),(29,40,59,73),(30,84,60,39),(31,38,49,83),(32,82,50,37),(33,48,51,81),(34,80,52,47),(35,46,53,79),(36,78,54,45)]])
48 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 6A | ··· | 6G | 12A | ··· | 12L |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | ··· | 2 | 4 | ··· | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | - | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | Q8 | D6 | D6 | C4○D4 | D12 | D4⋊2S3 | S3×Q8 |
kernel | C2×C4.D12 | C4.D12 | C2×C4⋊Dic3 | C2×D6⋊C4 | C6×C4⋊C4 | C22×Dic6 | S3×C22×C4 | C2×C4⋊C4 | C2×C12 | C22×S3 | C4⋊C4 | C22×C4 | C2×C6 | C2×C4 | C22 | C22 |
# reps | 1 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 3 | 4 | 8 | 2 | 2 |
Matrix representation of C2×C4.D12 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 10 |
0 | 0 | 0 | 0 | 3 | 10 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 10 |
0 | 0 | 0 | 0 | 3 | 6 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,7,3,0,0,0,0,10,10],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,12,0,0,0,0,0,0,7,3,0,0,0,0,10,6] >;
C2×C4.D12 in GAP, Magma, Sage, TeX
C_2\times C_4.D_{12}
% in TeX
G:=Group("C2xC4.D12");
// GroupNames label
G:=SmallGroup(192,1068);
// by ID
G=gap.SmallGroup(192,1068);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,675,297,192,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^12=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations