Extensions 1→N→G→Q→1 with N=D6 and Q=C4oD4

Direct product G=NxQ with N=D6 and Q=C4oD4
dρLabelID
C2xS3xC4oD448C2xS3xC4oD4192,1520

Semidirect products G=N:Q with N=D6 and Q=C4oD4
extensionφ:Q→Out NdρLabelID
D6:1(C4oD4) = C42:10D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6:1(C4oD4)192,1083
D6:2(C4oD4) = C42:14D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6:2(C4oD4)192,1106
D6:3(C4oD4) = C4:C4:21D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6:3(C4oD4)192,1165
D6:4(C4oD4) = C4:C4:26D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6:4(C4oD4)192,1186
D6:5(C4oD4) = C4:C4:28D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6:5(C4oD4)192,1215
D6:6(C4oD4) = (C2xD4):43D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6:6(C4oD4)192,1387
D6:7(C4oD4) = D4:5D12φ: C4oD4/D4C2 ⊆ Out D648D6:7(C4oD4)192,1113
D6:8(C4oD4) = C6.402+ 1+4φ: C4oD4/D4C2 ⊆ Out D648D6:8(C4oD4)192,1169
D6:9(C4oD4) = D12:20D4φ: C4oD4/D4C2 ⊆ Out D648D6:9(C4oD4)192,1171
D6:10(C4oD4) = C6.1212+ 1+4φ: C4oD4/D4C2 ⊆ Out D648D6:10(C4oD4)192,1213
D6:11(C4oD4) = D12:10D4φ: C4oD4/D4C2 ⊆ Out D648D6:11(C4oD4)192,1235
D6:12(C4oD4) = C6.1452+ 1+4φ: C4oD4/D4C2 ⊆ Out D648D6:12(C4oD4)192,1388
D6:13(C4oD4) = Q8:6D12φ: C4oD4/Q8C2 ⊆ Out D696D6:13(C4oD4)192,1135
D6:14(C4oD4) = Dic6:22D4φ: C4oD4/Q8C2 ⊆ Out D696D6:14(C4oD4)192,1192
D6:15(C4oD4) = Dic6:10D4φ: C4oD4/Q8C2 ⊆ Out D696D6:15(C4oD4)192,1236
D6:16(C4oD4) = C6.1072- 1+4φ: C4oD4/Q8C2 ⊆ Out D696D6:16(C4oD4)192,1390

Non-split extensions G=N.Q with N=D6 and Q=C4oD4
extensionφ:Q→Out NdρLabelID
D6.1(C4oD4) = C42.93D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.1(C4oD4)192,1087
D6.2(C4oD4) = C42.229D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.2(C4oD4)192,1116
D6.3(C4oD4) = C42.131D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.3(C4oD4)192,1139
D6.4(C4oD4) = C6.422+ 1+4φ: C4oD4/C2xC4C2 ⊆ Out D648D6.4(C4oD4)192,1172
D6.5(C4oD4) = C6.202- 1+4φ: C4oD4/C2xC4C2 ⊆ Out D696D6.5(C4oD4)192,1197
D6.6(C4oD4) = C6.612+ 1+4φ: C4oD4/C2xC4C2 ⊆ Out D648D6.6(C4oD4)192,1216
D6.7(C4oD4) = C6.632+ 1+4φ: C4oD4/C2xC4C2 ⊆ Out D696D6.7(C4oD4)192,1219
D6.8(C4oD4) = C42:22D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6.8(C4oD4)192,1237
D6.9(C4oD4) = C42.234D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.9(C4oD4)192,1239
D6.10(C4oD4) = C42.237D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.10(C4oD4)192,1250
D6.11(C4oD4) = C42.150D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.11(C4oD4)192,1251
D6.12(C4oD4) = C42:25D6φ: C4oD4/C2xC4C2 ⊆ Out D648D6.12(C4oD4)192,1263
D6.13(C4oD4) = C42.189D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.13(C4oD4)192,1265
D6.14(C4oD4) = C42.161D6φ: C4oD4/C2xC4C2 ⊆ Out D696D6.14(C4oD4)192,1266
D6.15(C4oD4) = C42:12D6φ: C4oD4/D4C2 ⊆ Out D648D6.15(C4oD4)192,1086
D6.16(C4oD4) = C42.94D6φ: C4oD4/D4C2 ⊆ Out D696D6.16(C4oD4)192,1088
D6.17(C4oD4) = C42:18D6φ: C4oD4/D4C2 ⊆ Out D648D6.17(C4oD4)192,1115
D6.18(C4oD4) = C42.132D6φ: C4oD4/D4C2 ⊆ Out D696D6.18(C4oD4)192,1140
D6.19(C4oD4) = C6.532+ 1+4φ: C4oD4/D4C2 ⊆ Out D648D6.19(C4oD4)192,1196
D6.20(C4oD4) = C6.212- 1+4φ: C4oD4/D4C2 ⊆ Out D696D6.20(C4oD4)192,1198
D6.21(C4oD4) = C6.1222+ 1+4φ: C4oD4/D4C2 ⊆ Out D648D6.21(C4oD4)192,1217
D6.22(C4oD4) = C6.622+ 1+4φ: C4oD4/D4C2 ⊆ Out D648D6.22(C4oD4)192,1218
D6.23(C4oD4) = C42:23D6φ: C4oD4/D4C2 ⊆ Out D648D6.23(C4oD4)192,1238
D6.24(C4oD4) = C42.151D6φ: C4oD4/D4C2 ⊆ Out D696D6.24(C4oD4)192,1252
D6.25(C4oD4) = C42.152D6φ: C4oD4/D4C2 ⊆ Out D696D6.25(C4oD4)192,1253
D6.26(C4oD4) = C42:26D6φ: C4oD4/D4C2 ⊆ Out D648D6.26(C4oD4)192,1264
D6.27(C4oD4) = C42.162D6φ: C4oD4/D4C2 ⊆ Out D696D6.27(C4oD4)192,1267
D6.28(C4oD4) = C42.95D6φ: C4oD4/Q8C2 ⊆ Out D696D6.28(C4oD4)192,1089
D6.29(C4oD4) = C42.113D6φ: C4oD4/Q8C2 ⊆ Out D696D6.29(C4oD4)192,1117
D6.30(C4oD4) = C6.432+ 1+4φ: C4oD4/Q8C2 ⊆ Out D696D6.30(C4oD4)192,1173
D6.31(C4oD4) = C6.642+ 1+4φ: C4oD4/Q8C2 ⊆ Out D696D6.31(C4oD4)192,1220
D6.32(C4oD4) = C42.153D6φ: C4oD4/Q8C2 ⊆ Out D696D6.32(C4oD4)192,1254
D6.33(C4oD4) = C42.163D6φ: C4oD4/Q8C2 ⊆ Out D696D6.33(C4oD4)192,1268
D6.34(C4oD4) = S3xC42:C2φ: trivial image48D6.34(C4oD4)192,1079
D6.35(C4oD4) = C4xS3xD4φ: trivial image48D6.35(C4oD4)192,1103
D6.36(C4oD4) = C4xS3xQ8φ: trivial image96D6.36(C4oD4)192,1130
D6.37(C4oD4) = S3xC4:D4φ: trivial image48D6.37(C4oD4)192,1163
D6.38(C4oD4) = S3xC22:Q8φ: trivial image48D6.38(C4oD4)192,1185
D6.39(C4oD4) = S3xC22.D4φ: trivial image48D6.39(C4oD4)192,1211
D6.40(C4oD4) = S3xC4.4D4φ: trivial image48D6.40(C4oD4)192,1232
D6.41(C4oD4) = S3xC42.C2φ: trivial image96D6.41(C4oD4)192,1246
D6.42(C4oD4) = S3xC42:2C2φ: trivial image48D6.42(C4oD4)192,1262

׿
x
:
Z
F
o
wr
Q
<