Copied to
clipboard

G = S3×C4.4D4order 192 = 26·3

Direct product of S3 and C4.4D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C4.4D4, C4235D6, (C2×Q8)⋊20D6, C4.31(S3×D4), (S3×C42)⋊9C2, C22⋊C432D6, (C4×S3).24D4, D6.60(C2×D4), C12.60(C2×D4), (C4×C12)⋊21C22, D6⋊C429C22, (C2×D4).170D6, Dic3.9(C2×D4), (C6×Q8)⋊11C22, C6.87(C22×D4), C427S323C2, D6.40(C4○D4), (C2×C6).217C24, (C2×C12).79C23, C23.12D623C2, C12.23D420C2, (C2×Dic6)⋊32C22, (C4×Dic3)⋊79C22, (C6×D4).152C22, (C22×C6).47C23, C23.49(C22×S3), C23.11D639C2, (C2×D12).162C22, C6.D432C22, (C22×S3).95C23, (S3×C23).62C22, C22.238(S3×C23), (C2×Dic3).112C23, (C2×S3×Q8)⋊9C2, (C2×S3×D4).9C2, C2.60(C2×S3×D4), C33(C2×C4.4D4), C2.75(S3×C4○D4), (S3×C22⋊C4)⋊16C2, C6.186(C2×C4○D4), (C3×C4.4D4)⋊9C2, (S3×C2×C4).297C22, (C3×C22⋊C4)⋊27C22, (C2×C4).300(C22×S3), (C2×C3⋊D4).58C22, SmallGroup(192,1232)

Series: Derived Chief Lower central Upper central

C1C2×C6 — S3×C4.4D4
C1C3C6C2×C6C22×S3S3×C23S3×C22⋊C4 — S3×C4.4D4
C3C2×C6 — S3×C4.4D4
C1C22C4.4D4

Generators and relations for S3×C4.4D4
 G = < a,b,c,d,e | a3=b2=c4=d4=1, e2=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=c2d-1 >

Subgroups: 944 in 330 conjugacy classes, 111 normal (29 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×S3, C22×S3, C22×C6, C2×C42, C2×C22⋊C4, C4.4D4, C4.4D4, C22×D4, C22×Q8, C4×Dic3, C4×Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, C2×D12, S3×D4, S3×Q8, C2×C3⋊D4, C6×D4, C6×Q8, S3×C23, C2×C4.4D4, S3×C42, C427S3, S3×C22⋊C4, C23.11D6, C23.12D6, C12.23D4, C3×C4.4D4, C2×S3×D4, C2×S3×Q8, S3×C4.4D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C4.4D4, C22×D4, C2×C4○D4, S3×D4, S3×C23, C2×C4.4D4, C2×S3×D4, S3×C4○D4, S3×C4.4D4

Smallest permutation representation of S3×C4.4D4
On 48 points
Generators in S48
(1 13 45)(2 14 46)(3 15 47)(4 16 48)(5 21 35)(6 22 36)(7 23 33)(8 24 34)(9 38 32)(10 39 29)(11 40 30)(12 37 31)(17 44 28)(18 41 25)(19 42 26)(20 43 27)
(1 9)(2 10)(3 11)(4 12)(5 43)(6 44)(7 41)(8 42)(13 32)(14 29)(15 30)(16 31)(17 22)(18 23)(19 24)(20 21)(25 33)(26 34)(27 35)(28 36)(37 48)(38 45)(39 46)(40 47)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 26 9 34)(2 27 10 35)(3 28 11 36)(4 25 12 33)(5 14 20 39)(6 15 17 40)(7 16 18 37)(8 13 19 38)(21 46 43 29)(22 47 44 30)(23 48 41 31)(24 45 42 32)
(1 35 3 33)(2 34 4 36)(5 15 7 13)(6 14 8 16)(9 27 11 25)(10 26 12 28)(17 39 19 37)(18 38 20 40)(21 47 23 45)(22 46 24 48)(29 42 31 44)(30 41 32 43)

G:=sub<Sym(48)| (1,13,45)(2,14,46)(3,15,47)(4,16,48)(5,21,35)(6,22,36)(7,23,33)(8,24,34)(9,38,32)(10,39,29)(11,40,30)(12,37,31)(17,44,28)(18,41,25)(19,42,26)(20,43,27), (1,9)(2,10)(3,11)(4,12)(5,43)(6,44)(7,41)(8,42)(13,32)(14,29)(15,30)(16,31)(17,22)(18,23)(19,24)(20,21)(25,33)(26,34)(27,35)(28,36)(37,48)(38,45)(39,46)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,9,34)(2,27,10,35)(3,28,11,36)(4,25,12,33)(5,14,20,39)(6,15,17,40)(7,16,18,37)(8,13,19,38)(21,46,43,29)(22,47,44,30)(23,48,41,31)(24,45,42,32), (1,35,3,33)(2,34,4,36)(5,15,7,13)(6,14,8,16)(9,27,11,25)(10,26,12,28)(17,39,19,37)(18,38,20,40)(21,47,23,45)(22,46,24,48)(29,42,31,44)(30,41,32,43)>;

G:=Group( (1,13,45)(2,14,46)(3,15,47)(4,16,48)(5,21,35)(6,22,36)(7,23,33)(8,24,34)(9,38,32)(10,39,29)(11,40,30)(12,37,31)(17,44,28)(18,41,25)(19,42,26)(20,43,27), (1,9)(2,10)(3,11)(4,12)(5,43)(6,44)(7,41)(8,42)(13,32)(14,29)(15,30)(16,31)(17,22)(18,23)(19,24)(20,21)(25,33)(26,34)(27,35)(28,36)(37,48)(38,45)(39,46)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,9,34)(2,27,10,35)(3,28,11,36)(4,25,12,33)(5,14,20,39)(6,15,17,40)(7,16,18,37)(8,13,19,38)(21,46,43,29)(22,47,44,30)(23,48,41,31)(24,45,42,32), (1,35,3,33)(2,34,4,36)(5,15,7,13)(6,14,8,16)(9,27,11,25)(10,26,12,28)(17,39,19,37)(18,38,20,40)(21,47,23,45)(22,46,24,48)(29,42,31,44)(30,41,32,43) );

G=PermutationGroup([[(1,13,45),(2,14,46),(3,15,47),(4,16,48),(5,21,35),(6,22,36),(7,23,33),(8,24,34),(9,38,32),(10,39,29),(11,40,30),(12,37,31),(17,44,28),(18,41,25),(19,42,26),(20,43,27)], [(1,9),(2,10),(3,11),(4,12),(5,43),(6,44),(7,41),(8,42),(13,32),(14,29),(15,30),(16,31),(17,22),(18,23),(19,24),(20,21),(25,33),(26,34),(27,35),(28,36),(37,48),(38,45),(39,46),(40,47)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,26,9,34),(2,27,10,35),(3,28,11,36),(4,25,12,33),(5,14,20,39),(6,15,17,40),(7,16,18,37),(8,13,19,38),(21,46,43,29),(22,47,44,30),(23,48,41,31),(24,45,42,32)], [(1,35,3,33),(2,34,4,36),(5,15,7,13),(6,14,8,16),(9,27,11,25),(10,26,12,28),(17,39,19,37),(18,38,20,40),(21,47,23,45),(22,46,24,48),(29,42,31,44),(30,41,32,43)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A···4F4G4H4I···4N4O4P6A6B6C6D6E12A···12F12G12H
order12222222222234···4444···4446666612···121212
size1111333344121222···2446···61212222884···488

42 irreducible representations

dim1111111111222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D4S3×D4S3×C4○D4
kernelS3×C4.4D4S3×C42C427S3S3×C22⋊C4C23.11D6C23.12D6C12.23D4C3×C4.4D4C2×S3×D4C2×S3×Q8C4.4D4C4×S3C42C22⋊C4C2×D4C2×Q8D6C4C2
# reps1114411111141411824

Matrix representation of S3×C4.4D4 in GL6(𝔽13)

100000
010000
001000
000100
0000012
0000112
,
100000
010000
001000
000100
000001
000010
,
080000
800000
001300
0081200
000010
000001
,
500000
050000
005200
001800
0000120
0000012
,
010000
1200000
008000
0012500
0000120
0000012

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,8,0,0,0,0,3,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,1,0,0,0,0,2,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,8,12,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

S3×C4.4D4 in GAP, Magma, Sage, TeX

S_3\times C_4._4D_4
% in TeX

G:=Group("S3xC4.4D4");
// GroupNames label

G:=SmallGroup(192,1232);
// by ID

G=gap.SmallGroup(192,1232);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,100,346,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=1,e^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=c^2*d^-1>;
// generators/relations

׿
×
𝔽