direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3xC4.4D4, C42:35D6, (C2xQ8):20D6, C4.31(S3xD4), (S3xC42):9C2, C22:C4:32D6, (C4xS3).24D4, D6.60(C2xD4), C12.60(C2xD4), (C4xC12):21C22, D6:C4:29C22, (C2xD4).170D6, Dic3.9(C2xD4), (C6xQ8):11C22, C6.87(C22xD4), C42:7S3:23C2, D6.40(C4oD4), (C2xC6).217C24, (C2xC12).79C23, C23.12D6:23C2, C12.23D4:20C2, (C2xDic6):32C22, (C4xDic3):79C22, (C6xD4).152C22, (C22xC6).47C23, C23.49(C22xS3), C23.11D6:39C2, (C2xD12).162C22, C6.D4:32C22, (C22xS3).95C23, (S3xC23).62C22, C22.238(S3xC23), (C2xDic3).112C23, (C2xS3xQ8):9C2, (C2xS3xD4).9C2, C2.60(C2xS3xD4), C3:3(C2xC4.4D4), C2.75(S3xC4oD4), (S3xC22:C4):16C2, C6.186(C2xC4oD4), (C3xC4.4D4):9C2, (S3xC2xC4).297C22, (C3xC22:C4):27C22, (C2xC4).300(C22xS3), (C2xC3:D4).58C22, SmallGroup(192,1232)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3xC4.4D4
G = < a,b,c,d,e | a3=b2=c4=d4=1, e2=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=c2d-1 >
Subgroups: 944 in 330 conjugacy classes, 111 normal (29 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C24, Dic6, C4xS3, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xS3, C22xS3, C22xC6, C2xC42, C2xC22:C4, C4.4D4, C4.4D4, C22xD4, C22xQ8, C4xDic3, C4xDic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C2xDic6, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, S3xD4, S3xQ8, C2xC3:D4, C6xD4, C6xQ8, S3xC23, C2xC4.4D4, S3xC42, C42:7S3, S3xC22:C4, C23.11D6, C23.12D6, C12.23D4, C3xC4.4D4, C2xS3xD4, C2xS3xQ8, S3xC4.4D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C4.4D4, C22xD4, C2xC4oD4, S3xD4, S3xC23, C2xC4.4D4, C2xS3xD4, S3xC4oD4, S3xC4.4D4
(1 13 45)(2 14 46)(3 15 47)(4 16 48)(5 21 35)(6 22 36)(7 23 33)(8 24 34)(9 38 32)(10 39 29)(11 40 30)(12 37 31)(17 44 28)(18 41 25)(19 42 26)(20 43 27)
(1 9)(2 10)(3 11)(4 12)(5 43)(6 44)(7 41)(8 42)(13 32)(14 29)(15 30)(16 31)(17 22)(18 23)(19 24)(20 21)(25 33)(26 34)(27 35)(28 36)(37 48)(38 45)(39 46)(40 47)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 26 9 34)(2 27 10 35)(3 28 11 36)(4 25 12 33)(5 14 20 39)(6 15 17 40)(7 16 18 37)(8 13 19 38)(21 46 43 29)(22 47 44 30)(23 48 41 31)(24 45 42 32)
(1 35 3 33)(2 34 4 36)(5 15 7 13)(6 14 8 16)(9 27 11 25)(10 26 12 28)(17 39 19 37)(18 38 20 40)(21 47 23 45)(22 46 24 48)(29 42 31 44)(30 41 32 43)
G:=sub<Sym(48)| (1,13,45)(2,14,46)(3,15,47)(4,16,48)(5,21,35)(6,22,36)(7,23,33)(8,24,34)(9,38,32)(10,39,29)(11,40,30)(12,37,31)(17,44,28)(18,41,25)(19,42,26)(20,43,27), (1,9)(2,10)(3,11)(4,12)(5,43)(6,44)(7,41)(8,42)(13,32)(14,29)(15,30)(16,31)(17,22)(18,23)(19,24)(20,21)(25,33)(26,34)(27,35)(28,36)(37,48)(38,45)(39,46)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,9,34)(2,27,10,35)(3,28,11,36)(4,25,12,33)(5,14,20,39)(6,15,17,40)(7,16,18,37)(8,13,19,38)(21,46,43,29)(22,47,44,30)(23,48,41,31)(24,45,42,32), (1,35,3,33)(2,34,4,36)(5,15,7,13)(6,14,8,16)(9,27,11,25)(10,26,12,28)(17,39,19,37)(18,38,20,40)(21,47,23,45)(22,46,24,48)(29,42,31,44)(30,41,32,43)>;
G:=Group( (1,13,45)(2,14,46)(3,15,47)(4,16,48)(5,21,35)(6,22,36)(7,23,33)(8,24,34)(9,38,32)(10,39,29)(11,40,30)(12,37,31)(17,44,28)(18,41,25)(19,42,26)(20,43,27), (1,9)(2,10)(3,11)(4,12)(5,43)(6,44)(7,41)(8,42)(13,32)(14,29)(15,30)(16,31)(17,22)(18,23)(19,24)(20,21)(25,33)(26,34)(27,35)(28,36)(37,48)(38,45)(39,46)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,9,34)(2,27,10,35)(3,28,11,36)(4,25,12,33)(5,14,20,39)(6,15,17,40)(7,16,18,37)(8,13,19,38)(21,46,43,29)(22,47,44,30)(23,48,41,31)(24,45,42,32), (1,35,3,33)(2,34,4,36)(5,15,7,13)(6,14,8,16)(9,27,11,25)(10,26,12,28)(17,39,19,37)(18,38,20,40)(21,47,23,45)(22,46,24,48)(29,42,31,44)(30,41,32,43) );
G=PermutationGroup([[(1,13,45),(2,14,46),(3,15,47),(4,16,48),(5,21,35),(6,22,36),(7,23,33),(8,24,34),(9,38,32),(10,39,29),(11,40,30),(12,37,31),(17,44,28),(18,41,25),(19,42,26),(20,43,27)], [(1,9),(2,10),(3,11),(4,12),(5,43),(6,44),(7,41),(8,42),(13,32),(14,29),(15,30),(16,31),(17,22),(18,23),(19,24),(20,21),(25,33),(26,34),(27,35),(28,36),(37,48),(38,45),(39,46),(40,47)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,26,9,34),(2,27,10,35),(3,28,11,36),(4,25,12,33),(5,14,20,39),(6,15,17,40),(7,16,18,37),(8,13,19,38),(21,46,43,29),(22,47,44,30),(23,48,41,31),(24,45,42,32)], [(1,35,3,33),(2,34,4,36),(5,15,7,13),(6,14,8,16),(9,27,11,25),(10,26,12,28),(17,39,19,37),(18,38,20,40),(21,47,23,45),(22,46,24,48),(29,42,31,44),(30,41,32,43)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | ··· | 4F | 4G | 4H | 4I | ··· | 4N | 4O | 4P | 6A | 6B | 6C | 6D | 6E | 12A | ··· | 12F | 12G | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 12 | 12 | 2 | 2 | ··· | 2 | 4 | 4 | 6 | ··· | 6 | 12 | 12 | 2 | 2 | 2 | 8 | 8 | 4 | ··· | 4 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D6 | C4oD4 | S3xD4 | S3xC4oD4 |
kernel | S3xC4.4D4 | S3xC42 | C42:7S3 | S3xC22:C4 | C23.11D6 | C23.12D6 | C12.23D4 | C3xC4.4D4 | C2xS3xD4 | C2xS3xQ8 | C4.4D4 | C4xS3 | C42 | C22:C4 | C2xD4 | C2xQ8 | D6 | C4 | C2 |
# reps | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 4 | 1 | 1 | 8 | 2 | 4 |
Matrix representation of S3xC4.4D4 ►in GL6(F13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 8 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 2 | 0 | 0 |
0 | 0 | 1 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,8,0,0,0,0,3,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,1,0,0,0,0,2,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,8,12,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;
S3xC4.4D4 in GAP, Magma, Sage, TeX
S_3\times C_4._4D_4
% in TeX
G:=Group("S3xC4.4D4");
// GroupNames label
G:=SmallGroup(192,1232);
// by ID
G=gap.SmallGroup(192,1232);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,100,346,136,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=1,e^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=c^2*d^-1>;
// generators/relations