Copied to
clipboard

G = C6.532+ 1+4order 192 = 26·3

53rd non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.532+ 1+4, C4⋊C412D6, (C2×Q8)⋊9D6, C22⋊Q814S3, (C6×Q8)⋊9C22, D6⋊C468C22, D63Q819C2, D6⋊D4.2C2, C22⋊C4.62D6, Dic35D428C2, D6.19(C4○D4), D6.D419C2, (C2×C6).181C24, (C2×C12).60C23, C4⋊Dic337C22, (C22×C4).259D6, C2.55(D46D6), C12.23D414C2, Dic3⋊C419C22, (C4×Dic3)⋊29C22, C23.16D68C2, C35(C22.45C24), (C2×D12).150C22, C23.21D616C2, (S3×C23).54C22, (C22×S3).74C23, C22.202(S3×C23), C23.204(C22×S3), (C22×C6).209C23, C22.9(Q83S3), (C2×Dic3).92C23, (C22×C12).381C22, C6.D4.121C22, (C22×Dic3).122C22, (C2×D6⋊C4)⋊37C2, (C4×C3⋊D4)⋊57C2, (S3×C22⋊C4)⋊9C2, (S3×C2×C4)⋊51C22, C4⋊C4⋊S317C2, C4⋊C47S326C2, C2.52(S3×C4○D4), (C3×C4⋊C4)⋊21C22, C6.164(C2×C4○D4), (C3×C22⋊Q8)⋊17C2, (C2×C6).26(C4○D4), (C2×C4).51(C22×S3), C2.18(C2×Q83S3), (C2×C3⋊D4).128C22, (C3×C22⋊C4).36C22, SmallGroup(192,1196)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C6.532+ 1+4
C1C3C6C2×C6C22×S3S3×C23S3×C22⋊C4 — C6.532+ 1+4
C3C2×C6 — C6.532+ 1+4
C1C22C22⋊Q8

Generators and relations for C6.532+ 1+4
 G = < a,b,c,d,e | a6=b4=c2=1, d2=a3b2, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=a3b-1, dbd-1=ebe-1=a3b, cd=dc, ce=ec, ede-1=b2d >

Subgroups: 688 in 248 conjugacy classes, 97 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C3, C4 [×11], C22, C22 [×2], C22 [×16], S3 [×4], C6 [×3], C6 [×2], C2×C4 [×6], C2×C4 [×12], D4 [×5], Q8, C23, C23 [×8], Dic3 [×5], C12 [×6], D6 [×2], D6 [×12], C2×C6, C2×C6 [×2], C2×C6 [×2], C42 [×3], C22⋊C4 [×2], C22⋊C4 [×12], C4⋊C4 [×3], C4⋊C4 [×5], C22×C4, C22×C4 [×4], C2×D4 [×3], C2×Q8, C24, C4×S3 [×4], D12 [×3], C2×Dic3 [×5], C2×Dic3 [×2], C3⋊D4 [×2], C2×C12 [×6], C2×C12, C3×Q8, C22×S3 [×3], C22×S3 [×5], C22×C6, C2×C22⋊C4 [×2], C42⋊C2 [×2], C4×D4 [×2], C22≀C2, C22⋊Q8, C22⋊Q8, C22.D4 [×3], C4.4D4, C422C2 [×2], C4×Dic3 [×3], Dic3⋊C4 [×3], C4⋊Dic3 [×2], D6⋊C4 [×11], C6.D4, C3×C22⋊C4 [×2], C3×C4⋊C4 [×3], S3×C2×C4 [×3], C2×D12 [×2], C22×Dic3, C2×C3⋊D4, C22×C12, C6×Q8, S3×C23, C22.45C24, C23.16D6, S3×C22⋊C4, D6⋊D4, C23.21D6, C4⋊C47S3, Dic35D4, D6.D4 [×2], C4⋊C4⋊S3 [×2], C2×D6⋊C4, C4×C3⋊D4, D63Q8, C12.23D4, C3×C22⋊Q8, C6.532+ 1+4
Quotients: C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×4], C24, C22×S3 [×7], C2×C4○D4 [×2], 2+ 1+4, Q83S3 [×2], S3×C23, C22.45C24, D46D6, C2×Q83S3, S3×C4○D4, C6.532+ 1+4

Smallest permutation representation of C6.532+ 1+4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 28 10 31)(2 29 11 32)(3 30 12 33)(4 25 7 34)(5 26 8 35)(6 27 9 36)(13 40 22 43)(14 41 23 44)(15 42 24 45)(16 37 19 46)(17 38 20 47)(18 39 21 48)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)(37 46)(38 47)(39 48)(40 43)(41 44)(42 45)
(1 19 7 13)(2 24 8 18)(3 23 9 17)(4 22 10 16)(5 21 11 15)(6 20 12 14)(25 46 31 40)(26 45 32 39)(27 44 33 38)(28 43 34 37)(29 48 35 42)(30 47 36 41)
(1 16 4 13)(2 17 5 14)(3 18 6 15)(7 22 10 19)(8 23 11 20)(9 24 12 21)(25 37 28 40)(26 38 29 41)(27 39 30 42)(31 43 34 46)(32 44 35 47)(33 45 36 48)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,10,31)(2,29,11,32)(3,30,12,33)(4,25,7,34)(5,26,8,35)(6,27,9,36)(13,40,22,43)(14,41,23,44)(15,42,24,45)(16,37,19,46)(17,38,20,47)(18,39,21,48), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,19,7,13)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,46,31,40)(26,45,32,39)(27,44,33,38)(28,43,34,37)(29,48,35,42)(30,47,36,41), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,10,31)(2,29,11,32)(3,30,12,33)(4,25,7,34)(5,26,8,35)(6,27,9,36)(13,40,22,43)(14,41,23,44)(15,42,24,45)(16,37,19,46)(17,38,20,47)(18,39,21,48), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,19,7,13)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,46,31,40)(26,45,32,39)(27,44,33,38)(28,43,34,37)(29,48,35,42)(30,47,36,41), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48) );

G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,28,10,31),(2,29,11,32),(3,30,12,33),(4,25,7,34),(5,26,8,35),(6,27,9,36),(13,40,22,43),(14,41,23,44),(15,42,24,45),(16,37,19,46),(17,38,20,47),(18,39,21,48)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33),(37,46),(38,47),(39,48),(40,43),(41,44),(42,45)], [(1,19,7,13),(2,24,8,18),(3,23,9,17),(4,22,10,16),(5,21,11,15),(6,20,12,14),(25,46,31,40),(26,45,32,39),(27,44,33,38),(28,43,34,37),(29,48,35,42),(30,47,36,41)], [(1,16,4,13),(2,17,5,14),(3,18,6,15),(7,22,10,19),(8,23,11,20),(9,24,12,21),(25,37,28,40),(26,38,29,41),(27,39,30,42),(31,43,34,46),(32,44,35,47),(33,45,36,48)])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C···4G4H···4M4N4O6A6B6C6D6E12A12B12C12D12E12F12G12H
order12222222223444···44···444666661212121212121212
size1111226612122224···46···612122224444448888

39 irreducible representations

dim1111111111111122222224444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4○D4C4○D42+ 1+4Q83S3D46D6S3×C4○D4
kernelC6.532+ 1+4C23.16D6S3×C22⋊C4D6⋊D4C23.21D6C4⋊C47S3Dic35D4D6.D4C4⋊C4⋊S3C2×D6⋊C4C4×C3⋊D4D63Q8C12.23D4C3×C22⋊Q8C22⋊Q8C22⋊C4C4⋊C4C22×C4C2×Q8D6C2×C6C6C22C2C2
# reps1111111221111112311441222

Matrix representation of C6.532+ 1+4 in GL6(𝔽13)

1200000
0120000
0001200
0011200
0000120
0000012
,
800000
050000
0012000
0001200
0000012
0000120
,
1200000
0120000
001000
000100
0000120
000001
,
010000
100000
000100
001000
000080
000005
,
010000
1200000
001000
000100
000080
000005

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,0,0,5],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,5] >;

C6.532+ 1+4 in GAP, Magma, Sage, TeX

C_6._{53}2_+^{1+4}
% in TeX

G:=Group("C6.53ES+(2,2)");
// GroupNames label

G:=SmallGroup(192,1196);
// by ID

G=gap.SmallGroup(192,1196);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,184,1571,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^4=c^2=1,d^2=a^3*b^2,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=a^3*b^-1,d*b*d^-1=e*b*e^-1=a^3*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽