Copied to
clipboard

G = S3×C4⋊D4order 192 = 26·3

Direct product of S3 and C4⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C4⋊D4, C45(S3×D4), C4⋊C420D6, D63(C2×D4), C125(C2×D4), (C4×S3)⋊11D4, (C2×D4)⋊20D6, C222(S3×D4), C22⋊C425D6, Dic37(C2×D4), (C22×C4)⋊41D6, Dic3⋊D418C2, D63D416C2, C12⋊D420C2, C127D432C2, D6⋊C425C22, (C22×S3)⋊11D4, (C6×D4)⋊10C22, C6.63(C22×D4), D6.37(C4○D4), (C2×D12)⋊22C22, (C2×C6).148C24, C4⋊Dic329C22, C23.14D611C2, (C2×C12).593C23, Dic3⋊C414C22, (C22×C12)⋊19C22, C23.24(C22×S3), C6.D420C22, (S3×C23).45C22, C22.169(S3×C23), (C22×C6).186C23, (C2×Dic3).69C23, (C22×S3).183C23, (C22×Dic3)⋊44C22, (C2×S3×D4)⋊8C2, (C2×C6)⋊2(C2×D4), C33(C2×C4⋊D4), (S3×C4⋊C4)⋊20C2, C2.36(C2×S3×D4), (S3×C22×C4)⋊3C2, (C3×C4⋊C4)⋊7C22, (S3×C22⋊C4)⋊4C2, (S3×C2×C4)⋊56C22, C2.37(S3×C4○D4), (C3×C4⋊D4)⋊10C2, C6.150(C2×C4○D4), (C2×C3⋊D4)⋊12C22, (C3×C22⋊C4)⋊9C22, (C2×C4).37(C22×S3), SmallGroup(192,1163)

Series: Derived Chief Lower central Upper central

C1C2×C6 — S3×C4⋊D4
C1C3C6C2×C6C22×S3S3×C23S3×C22×C4 — S3×C4⋊D4
C3C2×C6 — S3×C4⋊D4
C1C22C4⋊D4

Generators and relations for S3×C4⋊D4
 G = < a,b,c,d,e | a3=b2=c4=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 1264 in 426 conjugacy classes, 121 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C24, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C22×C6, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C23×C4, C22×D4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, S3×D4, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, S3×C23, S3×C23, C2×C4⋊D4, S3×C22⋊C4, Dic3⋊D4, S3×C4⋊C4, C12⋊D4, C127D4, D63D4, C23.14D6, C3×C4⋊D4, S3×C22×C4, C2×S3×D4, C2×S3×D4, S3×C4⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C4⋊D4, C22×D4, C2×C4○D4, S3×D4, S3×C23, C2×C4⋊D4, C2×S3×D4, S3×C4○D4, S3×C4⋊D4

Smallest permutation representation of S3×C4⋊D4
On 48 points
Generators in S48
(1 27 9)(2 28 10)(3 25 11)(4 26 12)(5 46 13)(6 47 14)(7 48 15)(8 45 16)(17 33 30)(18 34 31)(19 35 32)(20 36 29)(21 41 39)(22 42 40)(23 43 37)(24 44 38)
(9 27)(10 28)(11 25)(12 26)(13 46)(14 47)(15 48)(16 45)(17 33)(18 34)(19 35)(20 36)(21 41)(22 42)(23 43)(24 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 30 39 5)(2 29 40 8)(3 32 37 7)(4 31 38 6)(9 33 41 13)(10 36 42 16)(11 35 43 15)(12 34 44 14)(17 21 46 27)(18 24 47 26)(19 23 48 25)(20 22 45 28)
(1 3)(5 32)(6 31)(7 30)(8 29)(9 11)(13 35)(14 34)(15 33)(16 36)(17 48)(18 47)(19 46)(20 45)(21 23)(25 27)(37 39)(41 43)

G:=sub<Sym(48)| (1,27,9)(2,28,10)(3,25,11)(4,26,12)(5,46,13)(6,47,14)(7,48,15)(8,45,16)(17,33,30)(18,34,31)(19,35,32)(20,36,29)(21,41,39)(22,42,40)(23,43,37)(24,44,38), (9,27)(10,28)(11,25)(12,26)(13,46)(14,47)(15,48)(16,45)(17,33)(18,34)(19,35)(20,36)(21,41)(22,42)(23,43)(24,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,30,39,5)(2,29,40,8)(3,32,37,7)(4,31,38,6)(9,33,41,13)(10,36,42,16)(11,35,43,15)(12,34,44,14)(17,21,46,27)(18,24,47,26)(19,23,48,25)(20,22,45,28), (1,3)(5,32)(6,31)(7,30)(8,29)(9,11)(13,35)(14,34)(15,33)(16,36)(17,48)(18,47)(19,46)(20,45)(21,23)(25,27)(37,39)(41,43)>;

G:=Group( (1,27,9)(2,28,10)(3,25,11)(4,26,12)(5,46,13)(6,47,14)(7,48,15)(8,45,16)(17,33,30)(18,34,31)(19,35,32)(20,36,29)(21,41,39)(22,42,40)(23,43,37)(24,44,38), (9,27)(10,28)(11,25)(12,26)(13,46)(14,47)(15,48)(16,45)(17,33)(18,34)(19,35)(20,36)(21,41)(22,42)(23,43)(24,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,30,39,5)(2,29,40,8)(3,32,37,7)(4,31,38,6)(9,33,41,13)(10,36,42,16)(11,35,43,15)(12,34,44,14)(17,21,46,27)(18,24,47,26)(19,23,48,25)(20,22,45,28), (1,3)(5,32)(6,31)(7,30)(8,29)(9,11)(13,35)(14,34)(15,33)(16,36)(17,48)(18,47)(19,46)(20,45)(21,23)(25,27)(37,39)(41,43) );

G=PermutationGroup([[(1,27,9),(2,28,10),(3,25,11),(4,26,12),(5,46,13),(6,47,14),(7,48,15),(8,45,16),(17,33,30),(18,34,31),(19,35,32),(20,36,29),(21,41,39),(22,42,40),(23,43,37),(24,44,38)], [(9,27),(10,28),(11,25),(12,26),(13,46),(14,47),(15,48),(16,45),(17,33),(18,34),(19,35),(20,36),(21,41),(22,42),(23,43),(24,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,30,39,5),(2,29,40,8),(3,32,37,7),(4,31,38,6),(9,33,41,13),(10,36,42,16),(11,35,43,15),(12,34,44,14),(17,21,46,27),(18,24,47,26),(19,23,48,25),(20,22,45,28)], [(1,3),(5,32),(6,31),(7,30),(8,29),(9,11),(13,35),(14,34),(15,33),(16,36),(17,48),(18,47),(19,46),(20,45),(21,23),(25,27),(37,39),(41,43)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E6F6G12A12B12C12D12E12F
order122222222222222234444444444446666666121212121212
size1111223333446612122222244666612122224488444488

42 irreducible representations

dim1111111111122222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2S3D4D4D6D6D6D6C4○D4S3×D4S3×D4S3×C4○D4
kernelS3×C4⋊D4S3×C22⋊C4Dic3⋊D4S3×C4⋊C4C12⋊D4C127D4D63D4C23.14D6C3×C4⋊D4S3×C22×C4C2×S3×D4C4⋊D4C4×S3C22×S3C22⋊C4C4⋊C4C22×C4C2×D4D6C4C22C2
# reps1221111211314421134222

Matrix representation of S3×C4⋊D4 in GL6(𝔽13)

100000
010000
001000
000100
0000012
0000112
,
1200000
0120000
001000
000100
000001
000010
,
0120000
100000
0012500
0010100
0000120
0000012
,
050000
500000
001000
0031200
000010
000001
,
1200000
010000
0012000
0010100
000010
000001

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,10,0,0,0,0,5,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,5,0,0,0,0,5,0,0,0,0,0,0,0,1,3,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,10,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S3×C4⋊D4 in GAP, Magma, Sage, TeX

S_3\times C_4\rtimes D_4
% in TeX

G:=Group("S3xC4:D4");
// GroupNames label

G:=SmallGroup(192,1163);
// by ID

G=gap.SmallGroup(192,1163);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,794,297,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽