Copied to
clipboard

G = C4⋊C421D6order 192 = 26·3

4th semidirect product of C4⋊C4 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C421D6, (C2×D4)⋊22D6, (C4×S3)⋊12D4, D63(C4○D4), C232D68C2, C4⋊D426S3, C22⋊C426D6, D6.40(C2×D4), C4.182(S3×D4), D63D417C2, C4.D1220C2, (D4×Dic3)⋊20C2, C12.226(C2×D4), (C6×D4)⋊11C22, C6.65(C22×D4), Dic34D48C2, C23.9D618C2, (C2×C6).150C24, D6⋊C4.14C22, C4⋊Dic330C22, Dic3.63(C2×D4), (C22×C4).384D6, C12.48D433C2, C223(D42S3), (C2×C12).594C23, Dic3⋊C428C22, C34(C22.19C24), (C4×Dic3)⋊20C22, (C2×Dic6)⋊24C22, (C22×C6).19C23, C23.25(C22×S3), C6.D422C22, C22.171(S3×C23), (C2×Dic3).71C23, (S3×C23).107C22, (C22×S3).185C23, (C22×C12).240C22, (C22×Dic3)⋊19C22, C2.38(C2×S3×D4), (S3×C22×C4)⋊4C2, (C2×C6)⋊5(C4○D4), (C3×C4⋊C4)⋊9C22, C4⋊C47S319C2, C2.38(S3×C4○D4), (C3×C4⋊D4)⋊12C2, C6.151(C2×C4○D4), (C2×D42S3)⋊12C2, C2.36(C2×D42S3), (S3×C2×C4).247C22, (C3×C22⋊C4)⋊11C22, (C2×C4).294(C22×S3), (C2×C3⋊D4).27C22, SmallGroup(192,1165)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4⋊C421D6
C1C3C6C2×C6C22×S3S3×C23S3×C22×C4 — C4⋊C421D6
C3C2×C6 — C4⋊C421D6
C1C22C4⋊D4

Generators and relations for C4⋊C421D6
 G = < a,b,c,d | a4=b4=c6=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 848 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, S3×C2×C4, D42S3, C22×Dic3, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, S3×C23, C22.19C24, Dic34D4, C23.9D6, C4⋊C47S3, C4.D12, C12.48D4, D4×Dic3, C232D6, D63D4, C3×C4⋊D4, S3×C22×C4, C2×D42S3, C4⋊C421D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, S3×D4, D42S3, S3×C23, C22.19C24, C2×S3×D4, C2×D42S3, S3×C4○D4, C4⋊C421D6

Smallest permutation representation of C4⋊C421D6
On 48 points
Generators in S48
(1 28 7 34)(2 29 8 35)(3 30 9 36)(4 25 10 31)(5 26 11 32)(6 27 12 33)(13 40 16 37)(14 41 17 38)(15 42 18 39)(19 46 22 43)(20 47 23 44)(21 48 24 45)
(1 46 10 38)(2 39 11 47)(3 48 12 40)(4 41 7 43)(5 44 8 42)(6 37 9 45)(13 30 21 33)(14 34 22 25)(15 26 23 35)(16 36 24 27)(17 28 19 31)(18 32 20 29)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10)(13 17)(14 16)(19 21)(22 24)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 41)(38 40)(43 45)(46 48)

G:=sub<Sym(48)| (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,16,37)(14,41,17,38)(15,42,18,39)(19,46,22,43)(20,47,23,44)(21,48,24,45), (1,46,10,38)(2,39,11,47)(3,48,12,40)(4,41,7,43)(5,44,8,42)(6,37,9,45)(13,30,21,33)(14,34,22,25)(15,26,23,35)(16,36,24,27)(17,28,19,31)(18,32,20,29), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,17)(14,16)(19,21)(22,24)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48)>;

G:=Group( (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,16,37)(14,41,17,38)(15,42,18,39)(19,46,22,43)(20,47,23,44)(21,48,24,45), (1,46,10,38)(2,39,11,47)(3,48,12,40)(4,41,7,43)(5,44,8,42)(6,37,9,45)(13,30,21,33)(14,34,22,25)(15,26,23,35)(16,36,24,27)(17,28,19,31)(18,32,20,29), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,17)(14,16)(19,21)(22,24)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48) );

G=PermutationGroup([[(1,28,7,34),(2,29,8,35),(3,30,9,36),(4,25,10,31),(5,26,11,32),(6,27,12,33),(13,40,16,37),(14,41,17,38),(15,42,18,39),(19,46,22,43),(20,47,23,44),(21,48,24,45)], [(1,46,10,38),(2,39,11,47),(3,48,12,40),(4,41,7,43),(5,44,8,42),(6,37,9,45),(13,30,21,33),(14,34,22,25),(15,26,23,35),(16,36,24,27),(17,28,19,31),(18,32,20,29)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,12),(5,11),(6,10),(13,17),(14,16),(19,21),(22,24),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,41),(38,40),(43,45),(46,48)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P6A6B6C6D6E6F6G12A12B12C12D12E12F
order122222222222344444444444444446666666121212121212
size1111224466662222233334466121212122224488444488

42 irreducible representations

dim11111111111122222222444
type+++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D4C4○D4S3×D4D42S3S3×C4○D4
kernelC4⋊C421D6Dic34D4C23.9D6C4⋊C47S3C4.D12C12.48D4D4×Dic3C232D6D63D4C3×C4⋊D4S3×C22×C4C2×D42S3C4⋊D4C4×S3C22⋊C4C4⋊C4C22×C4C2×D4D6C2×C6C4C22C2
# reps12211122111114211344222

Matrix representation of C4⋊C421D6 in GL6(𝔽13)

500000
080000
001000
000100
000050
000008
,
080000
800000
001000
000100
000008
000050
,
100000
0120000
00121200
001000
0000120
0000012
,
100000
0120000
00121200
000100
0000120
000001

G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,8,0],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1] >;

C4⋊C421D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{21}D_6
% in TeX

G:=Group("C4:C4:21D6");
// GroupNames label

G:=SmallGroup(192,1165);
// by ID

G=gap.SmallGroup(192,1165);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,1123,794,297,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽