Copied to
clipboard

G = C4⋊C428D6order 192 = 26·3

11st semidirect product of C4⋊C4 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C428D6, D65(C4○D4), C22⋊C431D6, D6⋊D420C2, Dic3⋊D431C2, C232D616C2, D6⋊C427C22, D6⋊Q829C2, (C2×Dic3)⋊21D4, (C2×D4).165D6, Dic35D432C2, C22.45(S3×D4), C6.85(C22×D4), (C2×C6).200C24, (C2×C12).73C23, Dic3.49(C2×D4), (C22×C4).338D6, Dic34D420C2, Dic3⋊C423C22, C36(C22.19C24), (C2×Dic6)⋊28C22, (C4×Dic3)⋊32C22, (C6×D4).138C22, C22.D418S3, (C22×C6).35C23, C23.37(C22×S3), (C2×D12).156C22, C23.16D613C2, C23.28D621C2, C22.221(S3×C23), (S3×C23).110C22, (C22×S3).208C23, (C22×C12).368C22, (C2×Dic3).104C23, C6.D4.43C22, (C22×Dic3)⋊25C22, C2.58(C2×S3×D4), (S3×C2×C4)⋊22C22, (S3×C22×C4)⋊24C2, C2.62(S3×C4○D4), (C2×C6).61(C2×D4), (C3×C4⋊C4)⋊26C22, C6.174(C2×C4○D4), (C2×D42S3)⋊17C2, (C2×C3⋊D4)⋊19C22, (C2×C4).63(C22×S3), (C3×C22⋊C4)⋊22C22, (C3×C22.D4)⋊8C2, SmallGroup(192,1215)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4⋊C428D6
C1C3C6C2×C6C22×S3S3×C23S3×C22×C4 — C4⋊C428D6
C3C2×C6 — C4⋊C428D6
C1C22C22.D4

Generators and relations for C4⋊C428D6
 G = < a,b,c,d | a4=b4=c6=d2=1, bab-1=dad=a-1, cac-1=ab2, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 880 in 330 conjugacy classes, 107 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22.D4, C23×C4, C2×C4○D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, S3×C2×C4, S3×C2×C4, C2×D12, D42S3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C22.19C24, C23.16D6, Dic34D4, D6⋊D4, Dic3⋊D4, Dic35D4, D6⋊Q8, C23.28D6, C232D6, C3×C22.D4, S3×C22×C4, C2×D42S3, C4⋊C428D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, S3×D4, S3×C23, C22.19C24, C2×S3×D4, S3×C4○D4, C4⋊C428D6

Smallest permutation representation of C4⋊C428D6
On 48 points
Generators in S48
(1 41 10 38)(2 47 11 44)(3 37 12 40)(4 43 7 46)(5 39 8 42)(6 45 9 48)(13 27 16 36)(14 34 17 25)(15 29 18 32)(19 28 22 31)(20 35 23 26)(21 30 24 33)
(1 17 7 22)(2 23 8 18)(3 13 9 24)(4 19 10 14)(5 15 11 20)(6 21 12 16)(25 43 31 38)(26 39 32 44)(27 45 33 40)(28 41 34 46)(29 47 35 42)(30 37 36 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10)(13 19)(14 24)(15 23)(16 22)(17 21)(18 20)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 43)(38 48)(39 47)(40 46)(41 45)(42 44)

G:=sub<Sym(48)| (1,41,10,38)(2,47,11,44)(3,37,12,40)(4,43,7,46)(5,39,8,42)(6,45,9,48)(13,27,16,36)(14,34,17,25)(15,29,18,32)(19,28,22,31)(20,35,23,26)(21,30,24,33), (1,17,7,22)(2,23,8,18)(3,13,9,24)(4,19,10,14)(5,15,11,20)(6,21,12,16)(25,43,31,38)(26,39,32,44)(27,45,33,40)(28,41,34,46)(29,47,35,42)(30,37,36,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,19)(14,24)(15,23)(16,22)(17,21)(18,20)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,43)(38,48)(39,47)(40,46)(41,45)(42,44)>;

G:=Group( (1,41,10,38)(2,47,11,44)(3,37,12,40)(4,43,7,46)(5,39,8,42)(6,45,9,48)(13,27,16,36)(14,34,17,25)(15,29,18,32)(19,28,22,31)(20,35,23,26)(21,30,24,33), (1,17,7,22)(2,23,8,18)(3,13,9,24)(4,19,10,14)(5,15,11,20)(6,21,12,16)(25,43,31,38)(26,39,32,44)(27,45,33,40)(28,41,34,46)(29,47,35,42)(30,37,36,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,19)(14,24)(15,23)(16,22)(17,21)(18,20)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,43)(38,48)(39,47)(40,46)(41,45)(42,44) );

G=PermutationGroup([[(1,41,10,38),(2,47,11,44),(3,37,12,40),(4,43,7,46),(5,39,8,42),(6,45,9,48),(13,27,16,36),(14,34,17,25),(15,29,18,32),(19,28,22,31),(20,35,23,26),(21,30,24,33)], [(1,17,7,22),(2,23,8,18),(3,13,9,24),(4,19,10,14),(5,15,11,20),(6,21,12,16),(25,43,31,38),(26,39,32,44),(27,45,33,40),(28,41,34,46),(29,47,35,42),(30,37,36,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,12),(5,11),(6,10),(13,19),(14,24),(15,23),(16,22),(17,21),(18,20),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,43),(38,48),(39,47),(40,46),(41,45),(42,44)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P6A6B6C6D6E6F12A12B12C12D12E12F12G
order1222222222223444444444444444466666612121212121212
size1111224666612222223333444661212122224484444888

42 irreducible representations

dim111111111111222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D4S3×D4S3×C4○D4
kernelC4⋊C428D6C23.16D6Dic34D4D6⋊D4Dic3⋊D4Dic35D4D6⋊Q8C23.28D6C232D6C3×C22.D4S3×C22×C4C2×D42S3C22.D4C2×Dic3C22⋊C4C4⋊C4C22×C4C2×D4D6C22C2
# reps112122211111143211824

Matrix representation of C4⋊C428D6 in GL6(𝔽13)

010000
1200000
005500
000800
0000120
0000012
,
0120000
1200000
001100
00111200
0000120
0000012
,
100000
010000
001000
00111200
0000012
0000112
,
1200000
010000
0012000
002100
0000112
0000012

G:=sub<GL(6,GF(13))| [0,12,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,5,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,11,0,0,0,0,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,11,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,2,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12] >;

C4⋊C428D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{28}D_6
% in TeX

G:=Group("C4:C4:28D6");
// GroupNames label

G:=SmallGroup(192,1215);
// by ID

G=gap.SmallGroup(192,1215);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,1123,346,297,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a*b^2,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽