Extensions 1→N→G→Q→1 with N=C4 and Q=D4.S3

Direct product G=N×Q with N=C4 and Q=D4.S3
dρLabelID
C4×D4.S396C4xD4.S3192,576

Semidirect products G=N:Q with N=C4 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C41(D4.S3) = C124SD16φ: D4.S3/C3⋊C8C2 ⊆ Aut C496C4:1(D4.S3)192,635
C42(D4.S3) = Dic69D4φ: D4.S3/Dic6C2 ⊆ Aut C496C4:2(D4.S3)192,634
C43(D4.S3) = D4.2D12φ: D4.S3/C3×D4C2 ⊆ Aut C496C4:3(D4.S3)192,578

Non-split extensions G=N.Q with N=C4 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C4.1(D4.S3) = D81Dic3φ: D4.S3/C3⋊C8C2 ⊆ Aut C496C4.1(D4.S3)192,121
C4.2(D4.S3) = C6.5Q32φ: D4.S3/C3⋊C8C2 ⊆ Aut C4192C4.2(D4.S3)192,123
C4.3(D4.S3) = C12.16D8φ: D4.S3/C3⋊C8C2 ⊆ Aut C496C4.3(D4.S3)192,629
C4.4(D4.S3) = C12.SD16φ: D4.S3/C3⋊C8C2 ⊆ Aut C4192C4.4(D4.S3)192,639
C4.5(D4.S3) = C12.Q16φ: D4.S3/C3⋊C8C2 ⊆ Aut C4192C4.5(D4.S3)192,652
C4.6(D4.S3) = C12.9D8φ: D4.S3/Dic6C2 ⊆ Aut C496C4.6(D4.S3)192,103
C4.7(D4.S3) = C12.10D8φ: D4.S3/Dic6C2 ⊆ Aut C4192C4.7(D4.S3)192,106
C4.8(D4.S3) = Dic66Q8φ: D4.S3/Dic6C2 ⊆ Aut C4192C4.8(D4.S3)192,653
C4.9(D4.S3) = C4.Dic12φ: D4.S3/C3×D4C2 ⊆ Aut C4192C4.9(D4.S3)192,40
C4.10(D4.S3) = C12.2D8φ: D4.S3/C3×D4C2 ⊆ Aut C4192C4.10(D4.S3)192,45
C4.11(D4.S3) = C24.6Q8φ: D4.S3/C3×D4C2 ⊆ Aut C4484C4.11(D4.S3)192,53
C4.12(D4.S3) = D82Dic3φ: D4.S3/C3×D4C2 ⊆ Aut C4484C4.12(D4.S3)192,125
C4.13(D4.S3) = C12.38SD16φ: D4.S3/C3×D4C2 ⊆ Aut C496C4.13(D4.S3)192,567
C4.14(D4.S3) = C12.39SD16central extension (φ=1)192C4.14(D4.S3)192,39
C4.15(D4.S3) = Dic62C8central extension (φ=1)192C4.15(D4.S3)192,43
C4.16(D4.S3) = C12.57D8central extension (φ=1)96C4.16(D4.S3)192,93

׿
×
𝔽