Extensions 1→N→G→Q→1 with N=M5(2) and Q=C6

Direct product G=N×Q with N=M5(2) and Q=C6
dρLabelID
C6×M5(2)96C6xM5(2)192,936

Semidirect products G=N:Q with N=M5(2) and Q=C6
extensionφ:Q→Out NdρLabelID
M5(2)⋊1C6 = C3×C16⋊C22φ: C6/C3C2 ⊆ Out M5(2)484M5(2):1C6192,942
M5(2)⋊2C6 = C3×Q32⋊C2φ: C6/C3C2 ⊆ Out M5(2)964M5(2):2C6192,943
M5(2)⋊3C6 = C3×C23.C8φ: C6/C3C2 ⊆ Out M5(2)484M5(2):3C6192,155
M5(2)⋊4C6 = C3×D4.C8φ: C6/C3C2 ⊆ Out M5(2)962M5(2):4C6192,156
M5(2)⋊5C6 = C3×D82C4φ: C6/C3C2 ⊆ Out M5(2)484M5(2):5C6192,166
M5(2)⋊6C6 = C3×M5(2)⋊C2φ: C6/C3C2 ⊆ Out M5(2)484M5(2):6C6192,167
M5(2)⋊7C6 = C3×D4○C16φ: trivial image962M5(2):7C6192,937

Non-split extensions G=N.Q with N=M5(2) and Q=C6
extensionφ:Q→Out NdρLabelID
M5(2).1C6 = C3×C8.Q8φ: C6/C3C2 ⊆ Out M5(2)484M5(2).1C6192,171
M5(2).2C6 = C3×C16⋊C4φ: C6/C3C2 ⊆ Out M5(2)484M5(2).2C6192,153
M5(2).3C6 = C3×C8.17D4φ: C6/C3C2 ⊆ Out M5(2)964M5(2).3C6192,168
M5(2).4C6 = C3×C8.C8φ: C6/C3C2 ⊆ Out M5(2)482M5(2).4C6192,170

׿
×
𝔽