Extensions 1→N→G→Q→1 with N=M5(2) and Q=C6

Direct product G=NxQ with N=M5(2) and Q=C6
dρLabelID
C6xM5(2)96C6xM5(2)192,936

Semidirect products G=N:Q with N=M5(2) and Q=C6
extensionφ:Q→Out NdρLabelID
M5(2):1C6 = C3xC16:C22φ: C6/C3C2 ⊆ Out M5(2)484M5(2):1C6192,942
M5(2):2C6 = C3xQ32:C2φ: C6/C3C2 ⊆ Out M5(2)964M5(2):2C6192,943
M5(2):3C6 = C3xC23.C8φ: C6/C3C2 ⊆ Out M5(2)484M5(2):3C6192,155
M5(2):4C6 = C3xD4.C8φ: C6/C3C2 ⊆ Out M5(2)962M5(2):4C6192,156
M5(2):5C6 = C3xD8:2C4φ: C6/C3C2 ⊆ Out M5(2)484M5(2):5C6192,166
M5(2):6C6 = C3xM5(2):C2φ: C6/C3C2 ⊆ Out M5(2)484M5(2):6C6192,167
M5(2):7C6 = C3xD4oC16φ: trivial image962M5(2):7C6192,937

Non-split extensions G=N.Q with N=M5(2) and Q=C6
extensionφ:Q→Out NdρLabelID
M5(2).1C6 = C3xC8.Q8φ: C6/C3C2 ⊆ Out M5(2)484M5(2).1C6192,171
M5(2).2C6 = C3xC16:C4φ: C6/C3C2 ⊆ Out M5(2)484M5(2).2C6192,153
M5(2).3C6 = C3xC8.17D4φ: C6/C3C2 ⊆ Out M5(2)964M5(2).3C6192,168
M5(2).4C6 = C3xC8.C8φ: C6/C3C2 ⊆ Out M5(2)482M5(2).4C6192,170

׿
x
:
Z
F
o
wr
Q
<