Extensions 1→N→G→Q→1 with N=S3×Q16 and Q=C2

Direct product G=N×Q with N=S3×Q16 and Q=C2

Semidirect products G=N:Q with N=S3×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Q16)⋊1C2 = S3×C8.C22φ: C2/C1C2 ⊆ Out S3×Q16488-(S3xQ16):1C2192,1335
(S3×Q16)⋊2C2 = SD16.D6φ: C2/C1C2 ⊆ Out S3×Q16968-(S3xQ16):2C2192,1338
(S3×Q16)⋊3C2 = S3×SD32φ: C2/C1C2 ⊆ Out S3×Q16484(S3xQ16):3C2192,472
(S3×Q16)⋊4C2 = SD32⋊S3φ: C2/C1C2 ⊆ Out S3×Q16964-(S3xQ16):4C2192,474
(S3×Q16)⋊5C2 = Q32⋊S3φ: C2/C1C2 ⊆ Out S3×Q16964(S3xQ16):5C2192,477
(S3×Q16)⋊6C2 = D12.30D4φ: C2/C1C2 ⊆ Out S3×Q16964(S3xQ16):6C2192,1325
(S3×Q16)⋊7C2 = D8.10D6φ: C2/C1C2 ⊆ Out S3×Q16964-(S3xQ16):7C2192,1330
(S3×Q16)⋊8C2 = S3×C4○D8φ: trivial image484(S3xQ16):8C2192,1326

Non-split extensions G=N.Q with N=S3×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Q16).C2 = S3×Q32φ: C2/C1C2 ⊆ Out S3×Q16964-(S3xQ16).C2192,476