Copied to
clipboard

G = D12.30D4order 192 = 26·3

13rd non-split extension by D12 of D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.30D4, Q16.11D6, C12.13C24, C24.42C23, Dic6.30D4, D12.8C23, D24.13C22, Dic6.8C23, Dic12.15C22, C3:2(Q8oD8), C4oD24:4C2, C8oD12:3C2, (S3xQ16):6C2, (C6xQ16):3C2, C4.77(S3xD4), C3:C8.5C23, (C2xQ16):12S3, D6.28(C2xD4), Q16:S3:5C2, (C2xC8).105D6, C12.88(C2xD4), C3:D4.10D4, D24:C2:6C2, (C4xS3).7C23, (S3xC8).7C22, C4.13(S3xC23), C8.14(C22xS3), (C2xQ8).115D6, C22.22(S3xD4), Q8:2S3.C22, (S3xQ8).1C22, (C3xQ8).7C23, Q8.11D6:8C2, C8:S3.3C22, C24:C2.3C22, (C2xC24).35C22, Q8.15D6:4C2, Dic3.33(C2xD4), C6.114(C22xD4), Q8.17(C22xS3), C3:Q16.1C22, (C2xC12).530C23, C4oD12.53C22, Q8:3S3.1C22, (C6xQ8).152C22, (C3xQ16).11C22, C4.Dic3.48C22, C2.87(C2xS3xD4), (C2xC6).403(C2xD4), (C2xC4).231(C22xS3), SmallGroup(192,1325)

Series: Derived Chief Lower central Upper central

C1C12 — D12.30D4
C1C3C6C12C4xS3C4oD12Q8.15D6 — D12.30D4
C3C6C12 — D12.30D4
C1C2C2xC4C2xQ16

Generators and relations for D12.30D4
 G = < a,b,c,d | a12=b2=1, c4=d2=a6, bab=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a6b, dcd-1=a6c3 >

Subgroups: 616 in 248 conjugacy classes, 99 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, Q8, Q8, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC8, C2xC8, M4(2), D8, SD16, Q16, Q16, C2xQ8, C2xQ8, C4oD4, C3:C8, C24, Dic6, Dic6, Dic6, C4xS3, C4xS3, D12, D12, D12, C3:D4, C3:D4, C2xC12, C2xC12, C3xQ8, C3xQ8, C8oD4, C2xQ16, C2xQ16, C4oD8, C8.C22, 2- 1+4, S3xC8, C8:S3, C24:C2, D24, Dic12, C4.Dic3, Q8:2S3, C3:Q16, C2xC24, C3xQ16, C4oD12, C4oD12, C4oD12, S3xQ8, S3xQ8, Q8:3S3, Q8:3S3, C6xQ8, Q8oD8, C8oD12, C4oD24, S3xQ16, Q16:S3, D24:C2, Q8.11D6, C6xQ16, Q8.15D6, D12.30D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, S3xD4, S3xC23, Q8oD8, C2xS3xD4, D12.30D4

Smallest permutation representation of D12.30D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 38)(2 37)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 42)(10 41)(11 40)(12 39)(13 84)(14 83)(15 82)(16 81)(17 80)(18 79)(19 78)(20 77)(21 76)(22 75)(23 74)(24 73)(25 89)(26 88)(27 87)(28 86)(29 85)(30 96)(31 95)(32 94)(33 93)(34 92)(35 91)(36 90)(49 66)(50 65)(51 64)(52 63)(53 62)(54 61)(55 72)(56 71)(57 70)(58 69)(59 68)(60 67)
(1 71 92 19 7 65 86 13)(2 72 93 20 8 66 87 14)(3 61 94 21 9 67 88 15)(4 62 95 22 10 68 89 16)(5 63 96 23 11 69 90 17)(6 64 85 24 12 70 91 18)(25 81 47 53 31 75 41 59)(26 82 48 54 32 76 42 60)(27 83 37 55 33 77 43 49)(28 84 38 56 34 78 44 50)(29 73 39 57 35 79 45 51)(30 74 40 58 36 80 46 52)
(1 26 7 32)(2 33 8 27)(3 28 9 34)(4 35 10 29)(5 30 11 36)(6 25 12 31)(13 82 19 76)(14 77 20 83)(15 84 21 78)(16 79 22 73)(17 74 23 80)(18 81 24 75)(37 87 43 93)(38 94 44 88)(39 89 45 95)(40 96 46 90)(41 91 47 85)(42 86 48 92)(49 72 55 66)(50 67 56 61)(51 62 57 68)(52 69 58 63)(53 64 59 70)(54 71 60 65)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,38)(2,37)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,84)(14,83)(15,82)(16,81)(17,80)(18,79)(19,78)(20,77)(21,76)(22,75)(23,74)(24,73)(25,89)(26,88)(27,87)(28,86)(29,85)(30,96)(31,95)(32,94)(33,93)(34,92)(35,91)(36,90)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67), (1,71,92,19,7,65,86,13)(2,72,93,20,8,66,87,14)(3,61,94,21,9,67,88,15)(4,62,95,22,10,68,89,16)(5,63,96,23,11,69,90,17)(6,64,85,24,12,70,91,18)(25,81,47,53,31,75,41,59)(26,82,48,54,32,76,42,60)(27,83,37,55,33,77,43,49)(28,84,38,56,34,78,44,50)(29,73,39,57,35,79,45,51)(30,74,40,58,36,80,46,52), (1,26,7,32)(2,33,8,27)(3,28,9,34)(4,35,10,29)(5,30,11,36)(6,25,12,31)(13,82,19,76)(14,77,20,83)(15,84,21,78)(16,79,22,73)(17,74,23,80)(18,81,24,75)(37,87,43,93)(38,94,44,88)(39,89,45,95)(40,96,46,90)(41,91,47,85)(42,86,48,92)(49,72,55,66)(50,67,56,61)(51,62,57,68)(52,69,58,63)(53,64,59,70)(54,71,60,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,38)(2,37)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,84)(14,83)(15,82)(16,81)(17,80)(18,79)(19,78)(20,77)(21,76)(22,75)(23,74)(24,73)(25,89)(26,88)(27,87)(28,86)(29,85)(30,96)(31,95)(32,94)(33,93)(34,92)(35,91)(36,90)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67), (1,71,92,19,7,65,86,13)(2,72,93,20,8,66,87,14)(3,61,94,21,9,67,88,15)(4,62,95,22,10,68,89,16)(5,63,96,23,11,69,90,17)(6,64,85,24,12,70,91,18)(25,81,47,53,31,75,41,59)(26,82,48,54,32,76,42,60)(27,83,37,55,33,77,43,49)(28,84,38,56,34,78,44,50)(29,73,39,57,35,79,45,51)(30,74,40,58,36,80,46,52), (1,26,7,32)(2,33,8,27)(3,28,9,34)(4,35,10,29)(5,30,11,36)(6,25,12,31)(13,82,19,76)(14,77,20,83)(15,84,21,78)(16,79,22,73)(17,74,23,80)(18,81,24,75)(37,87,43,93)(38,94,44,88)(39,89,45,95)(40,96,46,90)(41,91,47,85)(42,86,48,92)(49,72,55,66)(50,67,56,61)(51,62,57,68)(52,69,58,63)(53,64,59,70)(54,71,60,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,38),(2,37),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,42),(10,41),(11,40),(12,39),(13,84),(14,83),(15,82),(16,81),(17,80),(18,79),(19,78),(20,77),(21,76),(22,75),(23,74),(24,73),(25,89),(26,88),(27,87),(28,86),(29,85),(30,96),(31,95),(32,94),(33,93),(34,92),(35,91),(36,90),(49,66),(50,65),(51,64),(52,63),(53,62),(54,61),(55,72),(56,71),(57,70),(58,69),(59,68),(60,67)], [(1,71,92,19,7,65,86,13),(2,72,93,20,8,66,87,14),(3,61,94,21,9,67,88,15),(4,62,95,22,10,68,89,16),(5,63,96,23,11,69,90,17),(6,64,85,24,12,70,91,18),(25,81,47,53,31,75,41,59),(26,82,48,54,32,76,42,60),(27,83,37,55,33,77,43,49),(28,84,38,56,34,78,44,50),(29,73,39,57,35,79,45,51),(30,74,40,58,36,80,46,52)], [(1,26,7,32),(2,33,8,27),(3,28,9,34),(4,35,10,29),(5,30,11,36),(6,25,12,31),(13,82,19,76),(14,77,20,83),(15,84,21,78),(16,79,22,73),(17,74,23,80),(18,81,24,75),(37,87,43,93),(38,94,44,88),(39,89,45,95),(40,96,46,90),(41,91,47,85),(42,86,48,92),(49,72,55,66),(50,67,56,61),(51,62,57,68),(52,69,58,63),(53,64,59,70),(54,71,60,65)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D8E12A12B12C12D12E12F24A24B24C24D
order1222222344444444446668888812121212121224242424
size112661212222444466121222222412124488884444

36 irreducible representations

dim11111111122222224444
type++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6S3xD4S3xD4Q8oD8D12.30D4
kernelD12.30D4C8oD12C4oD24S3xQ16Q16:S3D24:C2Q8.11D6C6xQ16Q8.15D6C2xQ16Dic6D12C3:D4C2xC8Q16C2xQ8C4C22C3C1
# reps11124221211121421124

Matrix representation of D12.30D4 in GL4(F7) generated by

0661
5263
6316
5554
,
1024
2255
6316
4263
,
3522
4512
6652
1630
,
1502
0043
6642
6142
G:=sub<GL(4,GF(7))| [0,5,6,5,6,2,3,5,6,6,1,5,1,3,6,4],[1,2,6,4,0,2,3,2,2,5,1,6,4,5,6,3],[3,4,6,1,5,5,6,6,2,1,5,3,2,2,2,0],[1,0,6,6,5,0,6,1,0,4,4,4,2,3,2,2] >;

D12.30D4 in GAP, Magma, Sage, TeX

D_{12}._{30}D_4
% in TeX

G:=Group("D12.30D4");
// GroupNames label

G:=SmallGroup(192,1325);
// by ID

G=gap.SmallGroup(192,1325);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,184,185,136,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^4=d^2=a^6,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=a^6*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<