Extensions 1→N→G→Q→1 with N=C2xD8 and Q=S3

Direct product G=NxQ with N=C2xD8 and Q=S3
dρLabelID
C2xS3xD848C2xS3xD8192,1313

Semidirect products G=N:Q with N=C2xD8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2xD8):1S3 = C2xC3:D16φ: S3/C3C2 ⊆ Out C2xD896(C2xD8):1S3192,705
(C2xD8):2S3 = Dic3:D8φ: S3/C3C2 ⊆ Out C2xD896(C2xD8):2S3192,709
(C2xD8):3S3 = C24:5D4φ: S3/C3C2 ⊆ Out C2xD896(C2xD8):3S3192,710
(C2xD8):4S3 = D12:D4φ: S3/C3C2 ⊆ Out C2xD848(C2xD8):4S3192,715
(C2xD8):5S3 = D6:3D8φ: S3/C3C2 ⊆ Out C2xD896(C2xD8):5S3192,716
(C2xD8):6S3 = Dic6:D4φ: S3/C3C2 ⊆ Out C2xD896(C2xD8):6S3192,717
(C2xD8):7S3 = D8.D6φ: S3/C3C2 ⊆ Out C2xD8484(C2xD8):7S3192,706
(C2xD8):8S3 = C24:11D4φ: S3/C3C2 ⊆ Out C2xD896(C2xD8):8S3192,713
(C2xD8):9S3 = C24:12D4φ: S3/C3C2 ⊆ Out C2xD896(C2xD8):9S3192,718
(C2xD8):10S3 = C24.23D4φ: S3/C3C2 ⊆ Out C2xD8484(C2xD8):10S3192,719
(C2xD8):11S3 = C2xD8:S3φ: S3/C3C2 ⊆ Out C2xD848(C2xD8):11S3192,1314
(C2xD8):12S3 = D8:13D6φ: S3/C3C2 ⊆ Out C2xD8484(C2xD8):12S3192,1316
(C2xD8):13S3 = C2xD8:3S3φ: trivial image96(C2xD8):13S3192,1315

Non-split extensions G=N.Q with N=C2xD8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2xD8).1S3 = D8:1Dic3φ: S3/C3C2 ⊆ Out C2xD896(C2xD8).1S3192,121
(C2xD8).2S3 = C2xD8.S3φ: S3/C3C2 ⊆ Out C2xD896(C2xD8).2S3192,707
(C2xD8).3S3 = (C6xD8).C2φ: S3/C3C2 ⊆ Out C2xD896(C2xD8).3S3192,712
(C2xD8).4S3 = C24.22D4φ: S3/C3C2 ⊆ Out C2xD896(C2xD8).4S3192,714
(C2xD8).5S3 = D8.Dic3φ: S3/C3C2 ⊆ Out C2xD8484(C2xD8).5S3192,122
(C2xD8).6S3 = D8:Dic3φ: S3/C3C2 ⊆ Out C2xD896(C2xD8).6S3192,711
(C2xD8).7S3 = Dic3xD8φ: trivial image96(C2xD8).7S3192,708

׿
x
:
Z
F
o
wr
Q
<