Copied to
clipboard

G = C24:5D4order 192 = 26·3

5th semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24:5D4, Dic3:1D8, C3:C8:14D4, (C6xD8):5C2, (C2xD8):3S3, C8:7(C3:D4), C3:3(C8:4D4), C6.44(C2xD8), C4.20(S3xD4), C2.27(S3xD8), (C2xD24):18C2, C12:3D4:4C2, (C8xDic3):5C2, (C2xD4).60D6, C12.45(C2xD4), (C2xC8).236D6, C6.26(C4:1D4), (C2xC24).88C22, (C6xD4).78C22, C22.252(S3xD4), C2.17(C12:3D4), (C2xC12).428C23, (C2xDic3).110D4, (C2xD12).114C22, (C4xDic3).238C22, C4.4(C2xC3:D4), (C2xD4:S3):17C2, (C2xC6).341(C2xD4), (C2xC3:C8).269C22, (C2xC4).518(C22xS3), SmallGroup(192,710)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24:5D4
C1C3C6C12C2xC12C4xDic3C12:3D4 — C24:5D4
C3C6C2xC12 — C24:5D4
C1C22C2xC4C2xD8

Generators and relations for C24:5D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a17, cac=a-1, cbc=b-1 >

Subgroups: 632 in 162 conjugacy classes, 47 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, D6, C2xC6, C2xC6, C42, C2xC8, C2xC8, D8, C2xD4, C2xD4, C3:C8, C24, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C4xC8, C4:1D4, C2xD8, C2xD8, D24, C2xC3:C8, C4xDic3, D4:S3, C2xC24, C3xD8, C2xD12, C2xC3:D4, C6xD4, C8:4D4, C8xDic3, C2xD24, C2xD4:S3, C12:3D4, C6xD8, C24:5D4
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C3:D4, C22xS3, C4:1D4, C2xD8, S3xD4, C2xC3:D4, C8:4D4, S3xD8, C12:3D4, C24:5D4

Smallest permutation representation of C24:5D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 46 52 85)(2 39 53 78)(3 32 54 95)(4 25 55 88)(5 42 56 81)(6 35 57 74)(7 28 58 91)(8 45 59 84)(9 38 60 77)(10 31 61 94)(11 48 62 87)(12 41 63 80)(13 34 64 73)(14 27 65 90)(15 44 66 83)(16 37 67 76)(17 30 68 93)(18 47 69 86)(19 40 70 79)(20 33 71 96)(21 26 72 89)(22 43 49 82)(23 36 50 75)(24 29 51 92)
(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(25 82)(26 81)(27 80)(28 79)(29 78)(30 77)(31 76)(32 75)(33 74)(34 73)(35 96)(36 95)(37 94)(38 93)(39 92)(40 91)(41 90)(42 89)(43 88)(44 87)(45 86)(46 85)(47 84)(48 83)(49 55)(50 54)(51 53)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,46,52,85)(2,39,53,78)(3,32,54,95)(4,25,55,88)(5,42,56,81)(6,35,57,74)(7,28,58,91)(8,45,59,84)(9,38,60,77)(10,31,61,94)(11,48,62,87)(12,41,63,80)(13,34,64,73)(14,27,65,90)(15,44,66,83)(16,37,67,76)(17,30,68,93)(18,47,69,86)(19,40,70,79)(20,33,71,96)(21,26,72,89)(22,43,49,82)(23,36,50,75)(24,29,51,92), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,82)(26,81)(27,80)(28,79)(29,78)(30,77)(31,76)(32,75)(33,74)(34,73)(35,96)(36,95)(37,94)(38,93)(39,92)(40,91)(41,90)(42,89)(43,88)(44,87)(45,86)(46,85)(47,84)(48,83)(49,55)(50,54)(51,53)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,46,52,85)(2,39,53,78)(3,32,54,95)(4,25,55,88)(5,42,56,81)(6,35,57,74)(7,28,58,91)(8,45,59,84)(9,38,60,77)(10,31,61,94)(11,48,62,87)(12,41,63,80)(13,34,64,73)(14,27,65,90)(15,44,66,83)(16,37,67,76)(17,30,68,93)(18,47,69,86)(19,40,70,79)(20,33,71,96)(21,26,72,89)(22,43,49,82)(23,36,50,75)(24,29,51,92), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,82)(26,81)(27,80)(28,79)(29,78)(30,77)(31,76)(32,75)(33,74)(34,73)(35,96)(36,95)(37,94)(38,93)(39,92)(40,91)(41,90)(42,89)(43,88)(44,87)(45,86)(46,85)(47,84)(48,83)(49,55)(50,54)(51,53)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,46,52,85),(2,39,53,78),(3,32,54,95),(4,25,55,88),(5,42,56,81),(6,35,57,74),(7,28,58,91),(8,45,59,84),(9,38,60,77),(10,31,61,94),(11,48,62,87),(12,41,63,80),(13,34,64,73),(14,27,65,90),(15,44,66,83),(16,37,67,76),(17,30,68,93),(18,47,69,86),(19,40,70,79),(20,33,71,96),(21,26,72,89),(22,43,49,82),(23,36,50,75),(24,29,51,92)], [(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(25,82),(26,81),(27,80),(28,79),(29,78),(30,77),(31,76),(32,75),(33,74),(34,73),(35,96),(36,95),(37,94),(38,93),(39,92),(40,91),(41,90),(42,89),(43,88),(44,87),(45,86),(46,85),(47,84),(48,83),(49,55),(50,54),(51,53),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E6F6G8A8B8C8D8E8F8G8H12A12B24A24B24C24D
order122222223444444666666688888888121224242424
size11118824242226666222888822226666444444

36 irreducible representations

dim11111122222222444
type++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D4D6D6D8C3:D4S3xD4S3xD4S3xD8
kernelC24:5D4C8xDic3C2xD24C2xD4:S3C12:3D4C6xD8C2xD8C3:C8C24C2xDic3C2xC8C2xD4Dic3C8C4C22C2
# reps11122112221284114

Matrix representation of C24:5D4 in GL4(F73) generated by

04800
383200
00072
00172
,
17000
257200
006043
003013
,
72000
48100
0001
0010
G:=sub<GL(4,GF(73))| [0,38,0,0,48,32,0,0,0,0,0,1,0,0,72,72],[1,25,0,0,70,72,0,0,0,0,60,30,0,0,43,13],[72,48,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;

C24:5D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_5D_4
% in TeX

G:=Group("C24:5D4");
// GroupNames label

G:=SmallGroup(192,710);
// by ID

G=gap.SmallGroup(192,710);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,422,135,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^17,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<