Copied to
clipboard

G = C24:11D4order 192 = 26·3

11st semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24:11D4, C3:C8:9D4, (C2xD8):8S3, (C6xD8):9C2, C8:3(C3:D4), C3:4(C8:3D4), C24:C4:9C2, C4.21(S3xD4), (C2xC8).85D6, C12:3D4:5C2, (C2xD4).62D6, C12.164(C2xD4), C23.12D6:4C2, C6.27(C4:1D4), C2.28(D8:S3), C6.49(C8:C22), (C2xDic3).64D4, (C6xD4).81C22, C22.254(S3xD4), C2.18(C12:3D4), (C2xC12).431C23, (C2xC24).147C22, (C2xD12).115C22, (C4xDic3).45C22, (C2xDic6).120C22, C4.5(C2xC3:D4), (C2xD4:S3):18C2, (C2xC24:C2):23C2, (C2xD4.S3):17C2, (C2xC6).344(C2xD4), (C2xC3:C8).148C22, (C2xC4).521(C22xS3), SmallGroup(192,713)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24:11D4
C1C3C6C12C2xC12C4xDic3C12:3D4 — C24:11D4
C3C6C2xC12 — C24:11D4
C1C22C2xC4C2xD8

Generators and relations for C24:11D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a5, cac=a11, cbc=b-1 >

Subgroups: 504 in 144 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, D6, C2xC6, C2xC6, C42, C22:C4, C2xC8, C2xC8, D8, SD16, C2xD4, C2xD4, C2xQ8, C3:C8, C24, Dic6, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C8:C4, C4.4D4, C4:1D4, C2xD8, C2xD8, C2xSD16, C24:C2, C2xC3:C8, C4xDic3, D4:S3, D4.S3, C6.D4, C2xC24, C3xD8, C2xDic6, C2xD12, C2xC3:D4, C6xD4, C8:3D4, C24:C4, C2xC24:C2, C2xD4:S3, C2xD4.S3, C23.12D6, C12:3D4, C6xD8, C24:11D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C4:1D4, C8:C22, S3xD4, C2xC3:D4, C8:3D4, D8:S3, C12:3D4, C24:11D4

Character table of C24:11D4

 class 12A2B2C2D2E2F34A4B4C4D4E6A6B6C6D6E6F6G8A8B8C8D12A12B24A24B24C24D
 size 111188242221212242228888441212444444
ρ1111111111111111111111111111111    trivial
ρ21111-1-11111-1-11111-1-1-1-111-1-1111111    linear of order 2
ρ31111-1-1-111111-1111-1-1-1-11111111111    linear of order 2
ρ4111111-1111-1-1-1111111111-1-1111111    linear of order 2
ρ51111-11-1111111111-1-111-1-1-1-111-1-1-1-1    linear of order 2
ρ611111-1-1111-1-1111111-1-1-1-11111-1-1-1-1    linear of order 2
ρ711111-1111111-111111-1-1-1-1-1-111-1-1-1-1    linear of order 2
ρ81111-111111-1-1-1111-1-111-1-11111-1-1-1-1    linear of order 2
ρ922-2-200022-2000-22-2000000-222-20000    orthogonal lifted from D4
ρ1022220002-2-22-2022200000000-2-20000    orthogonal lifted from D4
ρ112222-2-20-122000-1-1-111112200-1-1-1-1-1-1    orthogonal lifted from D6
ρ1222-2-20002-22000-22-20000-2200-22-22-22    orthogonal lifted from D4
ρ132222-220-122000-1-1-111-1-1-2-200-1-11111    orthogonal lifted from D6
ρ1422220002-2-2-22022200000000-2-20000    orthogonal lifted from D4
ρ1522-2-200022-2000-22-20000002-22-20000    orthogonal lifted from D4
ρ1622222-20-122000-1-1-1-1-111-2-200-1-11111    orthogonal lifted from D6
ρ172222220-122000-1-1-1-1-1-1-12200-1-1-1-1-1-1    orthogonal lifted from S3
ρ1822-2-20002-22000-22-200002-200-222-22-2    orthogonal lifted from D4
ρ1922-2-2000-1-220001-11-3--3-3--32-2001-1-11-11    complex lifted from C3:D4
ρ2022-2-2000-1-220001-11-3--3--3-3-22001-11-11-1    complex lifted from C3:D4
ρ2122-2-2000-1-220001-11--3-3-3--3-22001-11-11-1    complex lifted from C3:D4
ρ2222-2-2000-1-220001-11--3-3--3-32-2001-1-11-11    complex lifted from C3:D4
ρ234-4-44000400000-4-4400000000000000    orthogonal lifted from C8:C22
ρ244444000-2-4-4000-2-2-200000000220000    orthogonal lifted from S3xD4
ρ254-44-40004000004-4-400000000000000    orthogonal lifted from C8:C22
ρ2644-4-4000-24-40002-2200000000-220000    orthogonal lifted from S3xD4
ρ274-4-44000-20000022-20000000000-6--6--6-6    complex lifted from D8:S3
ρ284-44-4000-200000-2220000000000--6--6-6-6    complex lifted from D8:S3
ρ294-4-44000-20000022-20000000000--6-6-6--6    complex lifted from D8:S3
ρ304-44-4000-200000-2220000000000-6-6--6--6    complex lifted from D8:S3

Smallest permutation representation of C24:11D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 70 88 37)(2 51 89 42)(3 56 90 47)(4 61 91 28)(5 66 92 33)(6 71 93 38)(7 52 94 43)(8 57 95 48)(9 62 96 29)(10 67 73 34)(11 72 74 39)(12 53 75 44)(13 58 76 25)(14 63 77 30)(15 68 78 35)(16 49 79 40)(17 54 80 45)(18 59 81 26)(19 64 82 31)(20 69 83 36)(21 50 84 41)(22 55 85 46)(23 60 86 27)(24 65 87 32)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 58)(26 69)(27 56)(28 67)(29 54)(30 65)(31 52)(32 63)(33 50)(34 61)(35 72)(36 59)(37 70)(38 57)(39 68)(40 55)(41 66)(42 53)(43 64)(44 51)(45 62)(46 49)(47 60)(48 71)(73 91)(74 78)(75 89)(77 87)(79 85)(80 96)(81 83)(82 94)(84 92)(86 90)(93 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,70,88,37)(2,51,89,42)(3,56,90,47)(4,61,91,28)(5,66,92,33)(6,71,93,38)(7,52,94,43)(8,57,95,48)(9,62,96,29)(10,67,73,34)(11,72,74,39)(12,53,75,44)(13,58,76,25)(14,63,77,30)(15,68,78,35)(16,49,79,40)(17,54,80,45)(18,59,81,26)(19,64,82,31)(20,69,83,36)(21,50,84,41)(22,55,85,46)(23,60,86,27)(24,65,87,32), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,58)(26,69)(27,56)(28,67)(29,54)(30,65)(31,52)(32,63)(33,50)(34,61)(35,72)(36,59)(37,70)(38,57)(39,68)(40,55)(41,66)(42,53)(43,64)(44,51)(45,62)(46,49)(47,60)(48,71)(73,91)(74,78)(75,89)(77,87)(79,85)(80,96)(81,83)(82,94)(84,92)(86,90)(93,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,70,88,37)(2,51,89,42)(3,56,90,47)(4,61,91,28)(5,66,92,33)(6,71,93,38)(7,52,94,43)(8,57,95,48)(9,62,96,29)(10,67,73,34)(11,72,74,39)(12,53,75,44)(13,58,76,25)(14,63,77,30)(15,68,78,35)(16,49,79,40)(17,54,80,45)(18,59,81,26)(19,64,82,31)(20,69,83,36)(21,50,84,41)(22,55,85,46)(23,60,86,27)(24,65,87,32), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,58)(26,69)(27,56)(28,67)(29,54)(30,65)(31,52)(32,63)(33,50)(34,61)(35,72)(36,59)(37,70)(38,57)(39,68)(40,55)(41,66)(42,53)(43,64)(44,51)(45,62)(46,49)(47,60)(48,71)(73,91)(74,78)(75,89)(77,87)(79,85)(80,96)(81,83)(82,94)(84,92)(86,90)(93,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,70,88,37),(2,51,89,42),(3,56,90,47),(4,61,91,28),(5,66,92,33),(6,71,93,38),(7,52,94,43),(8,57,95,48),(9,62,96,29),(10,67,73,34),(11,72,74,39),(12,53,75,44),(13,58,76,25),(14,63,77,30),(15,68,78,35),(16,49,79,40),(17,54,80,45),(18,59,81,26),(19,64,82,31),(20,69,83,36),(21,50,84,41),(22,55,85,46),(23,60,86,27),(24,65,87,32)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,58),(26,69),(27,56),(28,67),(29,54),(30,65),(31,52),(32,63),(33,50),(34,61),(35,72),(36,59),(37,70),(38,57),(39,68),(40,55),(41,66),(42,53),(43,64),(44,51),(45,62),(46,49),(47,60),(48,71),(73,91),(74,78),(75,89),(77,87),(79,85),(80,96),(81,83),(82,94),(84,92),(86,90),(93,95)]])

Matrix representation of C24:11D4 in GL6(F73)

7200000
0720000
0042313142
0042113162
0042314231
0042114211
,
0720000
100000
001734240
0017564949
004901734
0024241756
,
7200000
010000
001000
00727200
0000720
000011

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,42,42,42,42,0,0,31,11,31,11,0,0,31,31,42,42,0,0,42,62,31,11],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,17,17,49,24,0,0,34,56,0,24,0,0,24,49,17,17,0,0,0,49,34,56],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,1,0,0,0,0,0,1] >;

C24:11D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_{11}D_4
% in TeX

G:=Group("C24:11D4");
// GroupNames label

G:=SmallGroup(192,713);
// by ID

G=gap.SmallGroup(192,713);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,1094,135,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^5,c*a*c=a^11,c*b*c=b^-1>;
// generators/relations

Export

Character table of C24:11D4 in TeX

׿
x
:
Z
F
o
wr
Q
<