extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1Dic6 = C8.Dic6 | φ: Dic6/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.1Dic6 | 192,46 |
C8.2Dic6 = C24.6Q8 | φ: Dic6/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.2Dic6 | 192,53 |
C8.3Dic6 = C24.Q8 | φ: Dic6/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.3Dic6 | 192,72 |
C8.4Dic6 = C6.6D16 | φ: Dic6/Dic3 → C2 ⊆ Aut C8 | 192 | | C8.4Dic6 | 192,48 |
C8.5Dic6 = C6.SD32 | φ: Dic6/Dic3 → C2 ⊆ Aut C8 | 192 | | C8.5Dic6 | 192,49 |
C8.6Dic6 = C8.6Dic6 | φ: Dic6/Dic3 → C2 ⊆ Aut C8 | 192 | | C8.6Dic6 | 192,437 |
C8.7Dic6 = C24.7Q8 | φ: Dic6/Dic3 → C2 ⊆ Aut C8 | 96 | 4 | C8.7Dic6 | 192,52 |
C8.8Dic6 = C8.8Dic6 | φ: Dic6/Dic3 → C2 ⊆ Aut C8 | 192 | | C8.8Dic6 | 192,417 |
C8.9Dic6 = C24.97D4 | φ: Dic6/Dic3 → C2 ⊆ Aut C8 | 48 | 4 | C8.9Dic6 | 192,70 |
C8.10Dic6 = C48⋊5C4 | φ: Dic6/C12 → C2 ⊆ Aut C8 | 192 | | C8.10Dic6 | 192,63 |
C8.11Dic6 = C48⋊6C4 | φ: Dic6/C12 → C2 ⊆ Aut C8 | 192 | | C8.11Dic6 | 192,64 |
C8.12Dic6 = C24.13Q8 | φ: Dic6/C12 → C2 ⊆ Aut C8 | 192 | | C8.12Dic6 | 192,242 |
C8.13Dic6 = C48.C4 | φ: Dic6/C12 → C2 ⊆ Aut C8 | 96 | 2 | C8.13Dic6 | 192,65 |
C8.14Dic6 = C24.1C8 | φ: Dic6/C12 → C2 ⊆ Aut C8 | 48 | 2 | C8.14Dic6 | 192,22 |
C8.15Dic6 = C12⋊C16 | central extension (φ=1) | 192 | | C8.15Dic6 | 192,21 |
C8.16Dic6 = Dic3⋊C16 | central extension (φ=1) | 192 | | C8.16Dic6 | 192,60 |