Extensions 1→N→G→Q→1 with N=C8 and Q=Dic6

Direct product G=NxQ with N=C8 and Q=Dic6
dρLabelID
C8xDic6192C8xDic6192,237

Semidirect products G=N:Q with N=C8 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C8:1Dic6 = C8:Dic6φ: Dic6/C6C22 ⊆ Aut C8192C8:1Dic6192,261
C8:2Dic6 = C24:3Q8φ: Dic6/C6C22 ⊆ Aut C8192C8:2Dic6192,415
C8:3Dic6 = C24:4Q8φ: Dic6/C6C22 ⊆ Aut C8192C8:3Dic6192,435
C8:4Dic6 = C24:2Q8φ: Dic6/Dic3C2 ⊆ Aut C8192C8:4Dic6192,433
C8:5Dic6 = C24:5Q8φ: Dic6/Dic3C2 ⊆ Aut C8192C8:5Dic6192,414
C8:6Dic6 = C24:Q8φ: Dic6/Dic3C2 ⊆ Aut C8192C8:6Dic6192,260
C8:7Dic6 = C24:8Q8φ: Dic6/C12C2 ⊆ Aut C8192C8:7Dic6192,241
C8:8Dic6 = C24:9Q8φ: Dic6/C12C2 ⊆ Aut C8192C8:8Dic6192,239
C8:9Dic6 = C24:12Q8φ: Dic6/C12C2 ⊆ Aut C8192C8:9Dic6192,238

Non-split extensions G=N.Q with N=C8 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C8.1Dic6 = C8.Dic6φ: Dic6/C6C22 ⊆ Aut C8484C8.1Dic6192,46
C8.2Dic6 = C24.6Q8φ: Dic6/C6C22 ⊆ Aut C8484C8.2Dic6192,53
C8.3Dic6 = C24.Q8φ: Dic6/C6C22 ⊆ Aut C8484C8.3Dic6192,72
C8.4Dic6 = C6.6D16φ: Dic6/Dic3C2 ⊆ Aut C8192C8.4Dic6192,48
C8.5Dic6 = C6.SD32φ: Dic6/Dic3C2 ⊆ Aut C8192C8.5Dic6192,49
C8.6Dic6 = C8.6Dic6φ: Dic6/Dic3C2 ⊆ Aut C8192C8.6Dic6192,437
C8.7Dic6 = C24.7Q8φ: Dic6/Dic3C2 ⊆ Aut C8964C8.7Dic6192,52
C8.8Dic6 = C8.8Dic6φ: Dic6/Dic3C2 ⊆ Aut C8192C8.8Dic6192,417
C8.9Dic6 = C24.97D4φ: Dic6/Dic3C2 ⊆ Aut C8484C8.9Dic6192,70
C8.10Dic6 = C48:5C4φ: Dic6/C12C2 ⊆ Aut C8192C8.10Dic6192,63
C8.11Dic6 = C48:6C4φ: Dic6/C12C2 ⊆ Aut C8192C8.11Dic6192,64
C8.12Dic6 = C24.13Q8φ: Dic6/C12C2 ⊆ Aut C8192C8.12Dic6192,242
C8.13Dic6 = C48.C4φ: Dic6/C12C2 ⊆ Aut C8962C8.13Dic6192,65
C8.14Dic6 = C24.1C8φ: Dic6/C12C2 ⊆ Aut C8482C8.14Dic6192,22
C8.15Dic6 = C12:C16central extension (φ=1)192C8.15Dic6192,21
C8.16Dic6 = Dic3:C16central extension (φ=1)192C8.16Dic6192,60

׿
x
:
Z
F
o
wr
Q
<