Extensions 1→N→G→Q→1 with N=C8 and Q=Dic6

Direct product G=N×Q with N=C8 and Q=Dic6
dρLabelID
C8×Dic6192C8xDic6192,237

Semidirect products G=N:Q with N=C8 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C81Dic6 = C8⋊Dic6φ: Dic6/C6C22 ⊆ Aut C8192C8:1Dic6192,261
C82Dic6 = C243Q8φ: Dic6/C6C22 ⊆ Aut C8192C8:2Dic6192,415
C83Dic6 = C244Q8φ: Dic6/C6C22 ⊆ Aut C8192C8:3Dic6192,435
C84Dic6 = C242Q8φ: Dic6/Dic3C2 ⊆ Aut C8192C8:4Dic6192,433
C85Dic6 = C245Q8φ: Dic6/Dic3C2 ⊆ Aut C8192C8:5Dic6192,414
C86Dic6 = C24⋊Q8φ: Dic6/Dic3C2 ⊆ Aut C8192C8:6Dic6192,260
C87Dic6 = C248Q8φ: Dic6/C12C2 ⊆ Aut C8192C8:7Dic6192,241
C88Dic6 = C249Q8φ: Dic6/C12C2 ⊆ Aut C8192C8:8Dic6192,239
C89Dic6 = C2412Q8φ: Dic6/C12C2 ⊆ Aut C8192C8:9Dic6192,238

Non-split extensions G=N.Q with N=C8 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C8.1Dic6 = C8.Dic6φ: Dic6/C6C22 ⊆ Aut C8484C8.1Dic6192,46
C8.2Dic6 = C24.6Q8φ: Dic6/C6C22 ⊆ Aut C8484C8.2Dic6192,53
C8.3Dic6 = C24.Q8φ: Dic6/C6C22 ⊆ Aut C8484C8.3Dic6192,72
C8.4Dic6 = C6.6D16φ: Dic6/Dic3C2 ⊆ Aut C8192C8.4Dic6192,48
C8.5Dic6 = C6.SD32φ: Dic6/Dic3C2 ⊆ Aut C8192C8.5Dic6192,49
C8.6Dic6 = C8.6Dic6φ: Dic6/Dic3C2 ⊆ Aut C8192C8.6Dic6192,437
C8.7Dic6 = C24.7Q8φ: Dic6/Dic3C2 ⊆ Aut C8964C8.7Dic6192,52
C8.8Dic6 = C8.8Dic6φ: Dic6/Dic3C2 ⊆ Aut C8192C8.8Dic6192,417
C8.9Dic6 = C24.97D4φ: Dic6/Dic3C2 ⊆ Aut C8484C8.9Dic6192,70
C8.10Dic6 = C485C4φ: Dic6/C12C2 ⊆ Aut C8192C8.10Dic6192,63
C8.11Dic6 = C486C4φ: Dic6/C12C2 ⊆ Aut C8192C8.11Dic6192,64
C8.12Dic6 = C24.13Q8φ: Dic6/C12C2 ⊆ Aut C8192C8.12Dic6192,242
C8.13Dic6 = C48.C4φ: Dic6/C12C2 ⊆ Aut C8962C8.13Dic6192,65
C8.14Dic6 = C24.1C8φ: Dic6/C12C2 ⊆ Aut C8482C8.14Dic6192,22
C8.15Dic6 = C12⋊C16central extension (φ=1)192C8.15Dic6192,21
C8.16Dic6 = Dic3⋊C16central extension (φ=1)192C8.16Dic6192,60

׿
×
𝔽