extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Q8⋊C4)⋊1C2 = C3×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):1C2 | 192,898 |
(C3×Q8⋊C4)⋊2C2 = C3×C8.18D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):2C2 | 192,900 |
(C3×Q8⋊C4)⋊3C2 = C3×C42.78C22 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):3C2 | 192,921 |
(C3×Q8⋊C4)⋊4C2 = D6⋊Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):4C2 | 192,368 |
(C3×Q8⋊C4)⋊5C2 = Q8⋊4D12 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):5C2 | 192,369 |
(C3×Q8⋊C4)⋊6C2 = D6.Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):6C2 | 192,370 |
(C3×Q8⋊C4)⋊7C2 = D6⋊C8.C2 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):7C2 | 192,373 |
(C3×Q8⋊C4)⋊8C2 = D12.12D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):8C2 | 192,378 |
(C3×Q8⋊C4)⋊9C2 = Dic6.11D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):9C2 | 192,357 |
(C3×Q8⋊C4)⋊10C2 = D6.1SD16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):10C2 | 192,364 |
(C3×Q8⋊C4)⋊11C2 = Q8⋊3D12 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):11C2 | 192,365 |
(C3×Q8⋊C4)⋊12C2 = Q8.11D12 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):12C2 | 192,367 |
(C3×Q8⋊C4)⋊13C2 = C8⋊Dic3⋊C2 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):13C2 | 192,374 |
(C3×Q8⋊C4)⋊14C2 = Dic3⋊SD16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):14C2 | 192,377 |
(C3×Q8⋊C4)⋊15C2 = C3×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):15C2 | 192,882 |
(C3×Q8⋊C4)⋊16C2 = C3×C22⋊Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):16C2 | 192,884 |
(C3×Q8⋊C4)⋊17C2 = C3×D4.2D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):17C2 | 192,896 |
(C3×Q8⋊C4)⋊18C2 = C3×C23.48D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):18C2 | 192,917 |
(C3×Q8⋊C4)⋊19C2 = Dic3⋊7SD16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):19C2 | 192,347 |
(C3×Q8⋊C4)⋊20C2 = (C2×C8).D6 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):20C2 | 192,353 |
(C3×Q8⋊C4)⋊21C2 = Q8⋊C4⋊S3 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):21C2 | 192,359 |
(C3×Q8⋊C4)⋊22C2 = S3×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):22C2 | 192,360 |
(C3×Q8⋊C4)⋊23C2 = (S3×Q8)⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):23C2 | 192,361 |
(C3×Q8⋊C4)⋊24C2 = Q8⋊7(C4×S3) | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):24C2 | 192,362 |
(C3×Q8⋊C4)⋊25C2 = C4⋊C4.150D6 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):25C2 | 192,363 |
(C3×Q8⋊C4)⋊26C2 = D6⋊2SD16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):26C2 | 192,366 |
(C3×Q8⋊C4)⋊27C2 = C3⋊(C8⋊D4) | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):27C2 | 192,371 |
(C3×Q8⋊C4)⋊28C2 = D6⋊1Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):28C2 | 192,372 |
(C3×Q8⋊C4)⋊29C2 = C3⋊C8.D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):29C2 | 192,375 |
(C3×Q8⋊C4)⋊30C2 = Q8⋊3(C4×S3) | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):30C2 | 192,376 |
(C3×Q8⋊C4)⋊31C2 = C3×Q8⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):31C2 | 192,881 |
(C3×Q8⋊C4)⋊32C2 = C3×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):32C2 | 192,885 |
(C3×Q8⋊C4)⋊33C2 = C3×D4.D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):33C2 | 192,894 |
(C3×Q8⋊C4)⋊34C2 = C3×Q8.D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):34C2 | 192,897 |
(C3×Q8⋊C4)⋊35C2 = C3×C23.47D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):35C2 | 192,916 |
(C3×Q8⋊C4)⋊36C2 = C3×C23.20D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):36C2 | 192,918 |
(C3×Q8⋊C4)⋊37C2 = C3×C23.36D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):37C2 | 192,850 |
(C3×Q8⋊C4)⋊38C2 = C3×C23.38D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):38C2 | 192,852 |
(C3×Q8⋊C4)⋊39C2 = C3×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):39C2 | 192,873 |
(C3×Q8⋊C4)⋊40C2 = C3×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):40C2 | 192,901 |
(C3×Q8⋊C4)⋊41C2 = C3×C8.D4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):41C2 | 192,903 |
(C3×Q8⋊C4)⋊42C2 = C3×C42.28C22 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 96 | | (C3xQ8:C4):42C2 | 192,922 |
(C3×Q8⋊C4)⋊43C2 = C3×C23.24D4 | φ: trivial image | 96 | | (C3xQ8:C4):43C2 | 192,849 |
(C3×Q8⋊C4)⋊44C2 = C12×SD16 | φ: trivial image | 96 | | (C3xQ8:C4):44C2 | 192,871 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Q8⋊C4).1C2 = C3×C4.SD16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).1C2 | 192,920 |
(C3×Q8⋊C4).2C2 = Q8⋊3Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).2C2 | 192,352 |
(C3×Q8⋊C4).3C2 = Dic3⋊Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).3C2 | 192,354 |
(C3×Q8⋊C4).4C2 = Q8.3Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).4C2 | 192,355 |
(C3×Q8⋊C4).5C2 = Q8⋊2Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).5C2 | 192,350 |
(C3×Q8⋊C4).6C2 = Q8.4Dic6 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).6C2 | 192,358 |
(C3×Q8⋊C4).7C2 = C3×C4⋊2Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).7C2 | 192,895 |
(C3×Q8⋊C4).8C2 = C3×C4.Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).8C2 | 192,910 |
(C3×Q8⋊C4).9C2 = C3⋊Q16⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).9C2 | 192,348 |
(C3×Q8⋊C4).10C2 = Dic3⋊4Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).10C2 | 192,349 |
(C3×Q8⋊C4).11C2 = Dic3.1Q16 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).11C2 | 192,351 |
(C3×Q8⋊C4).12C2 = (C2×Q8).36D6 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).12C2 | 192,356 |
(C3×Q8⋊C4).13C2 = C3×Q8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).13C2 | 192,908 |
(C3×Q8⋊C4).14C2 = C3×Q8.Q8 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).14C2 | 192,912 |
(C3×Q8⋊C4).15C2 = C3×Q16⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).15C2 | 192,874 |
(C3×Q8⋊C4).16C2 = C3×C42.30C22 | φ: C2/C1 → C2 ⊆ Out C3×Q8⋊C4 | 192 | | (C3xQ8:C4).16C2 | 192,924 |
(C3×Q8⋊C4).17C2 = C12×Q16 | φ: trivial image | 192 | | (C3xQ8:C4).17C2 | 192,872 |