Copied to
clipboard

G = C3⋊C8.D4order 192 = 26·3

1st non-split extension by C3⋊C8 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3⋊C8.1D4, C4⋊C4.30D6, (C2×C8).178D6, C4.169(S3×D4), C31(C8.D4), (C2×Q8).46D6, Q8⋊C419S3, C12.127(C2×D4), C4.D12.3C2, D63Q8.6C2, C4.35(C4○D12), C12.22(C4○D4), C6.26(C4⋊D4), C12.Q813C2, C2.Dic1230C2, (C2×Dic3).34D4, (C22×S3).22D4, C22.206(S3×D4), (C6×Q8).39C22, C2.29(Dic3⋊D4), (C2×C12).256C23, (C2×C24).246C22, C2.18(Q16⋊S3), C2.19(D4.D6), C6.64(C8.C22), C4⋊Dic3.100C22, (C2×Dic6).74C22, (C2×C3⋊Q16)⋊6C2, (C2×C8⋊S3).7C2, (C2×C6).269(C2×D4), (C2×C3⋊C8).46C22, (S3×C2×C4).28C22, (C3×Q8⋊C4)⋊29C2, (C3×C4⋊C4).57C22, (C2×C4).363(C22×S3), SmallGroup(192,375)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C3⋊C8.D4
C1C3C6C12C2×C12S3×C2×C4C4.D12 — C3⋊C8.D4
C3C6C2×C12 — C3⋊C8.D4
C1C22C2×C4Q8⋊C4

Generators and relations for C3⋊C8.D4
 G = < a,b,c,d | a3=b8=c4=d2=1, bab-1=dad=a-1, ac=ca, cbc-1=b3, dbd=b5, dcd=b4c-1 >

Subgroups: 312 in 110 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), Q16, C22×C4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, Q8⋊C4, Q8⋊C4, C4.Q8, C22⋊Q8, C2×M4(2), C2×Q16, C8⋊S3, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C3⋊Q16, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C6×Q8, C8.D4, C12.Q8, C2.Dic12, C3×Q8⋊C4, C4.D12, C2×C8⋊S3, C2×C3⋊Q16, D63Q8, C3⋊C8.D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4⋊D4, C8.C22, C4○D12, S3×D4, C8.D4, Dic3⋊D4, D4.D6, Q16⋊S3, C3⋊C8.D4

Character table of C3⋊C8.D4

 class 12A2B2C2D34A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111112222881224242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ211111111-111-11111-1-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ31111-1111-11-11-1111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ41111-111111-1-1-111111-1-11111111111    linear of order 2
ρ5111111111-111-1111-1-1-1-111-1-111-1-1-1-1    linear of order 2
ρ611111111-1-11-1-1111111111-1-1-1-11111    linear of order 2
ρ71111-1111-1-1-11111111-1-111-1-1-1-11111    linear of order 2
ρ81111-11111-1-1-11111-1-11111-1-111-1-1-1-1    linear of order 2
ρ92-2-22022-2000002-2-2002-22-200000000    orthogonal lifted from D4
ρ1022220-12222000-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ112-2-22022-2000002-2-200-222-200000000    orthogonal lifted from D4
ρ1222220-122-22000-1-1-1-2-200-1-1-1-1111111    orthogonal lifted from D6
ρ13222222-2-200-2002220000-2-200000000    orthogonal lifted from D4
ρ142222-22-2-2002002220000-2-200000000    orthogonal lifted from D4
ρ1522220-122-2-2000-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ1622220-1222-2000-1-1-1-2-200-1-111-1-11111    orthogonal lifted from D6
ρ172-2-2202-22000002-2-22i-2i00-220000-2i2i2i-2i    complex lifted from C4○D4
ρ182-2-2202-22000002-2-2-2i2i00-2200002i-2i-2i2i    complex lifted from C4○D4
ρ192-2-220-1-2200000-111-2i2i001-1-3--3-33-iii-i    complex lifted from C4○D12
ρ202-2-220-1-2200000-1112i-2i001-1--3-3-33i-i-ii    complex lifted from C4○D12
ρ212-2-220-1-2200000-111-2i2i001-1--3-33-3-iii-i    complex lifted from C4○D12
ρ222-2-220-1-2200000-1112i-2i001-1-3--33-3i-i-ii    complex lifted from C4○D12
ρ234-4-440-24-400000-2220000-2200000000    orthogonal lifted from S3×D4
ρ2444440-2-4-400000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ254-44-4040000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-4040000000-4-4400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2744-4-40-2000000022-20000000000-66-66    symplectic lifted from D4.D6, Schur index 2
ρ2844-4-40-2000000022-200000000006-66-6    symplectic lifted from D4.D6, Schur index 2
ρ294-44-40-200000002-220000000000-6-6--6--6    complex lifted from Q16⋊S3
ρ304-44-40-200000002-220000000000--6--6-6-6    complex lifted from Q16⋊S3

Smallest permutation representation of C3⋊C8.D4
On 96 points
Generators in S96
(1 17 76)(2 77 18)(3 19 78)(4 79 20)(5 21 80)(6 73 22)(7 23 74)(8 75 24)(9 55 65)(10 66 56)(11 49 67)(12 68 50)(13 51 69)(14 70 52)(15 53 71)(16 72 54)(25 89 48)(26 41 90)(27 91 42)(28 43 92)(29 93 44)(30 45 94)(31 95 46)(32 47 96)(33 61 84)(34 85 62)(35 63 86)(36 87 64)(37 57 88)(38 81 58)(39 59 82)(40 83 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 12 61 26)(2 15 62 29)(3 10 63 32)(4 13 64 27)(5 16 57 30)(6 11 58 25)(7 14 59 28)(8 9 60 31)(17 68 84 41)(18 71 85 44)(19 66 86 47)(20 69 87 42)(21 72 88 45)(22 67 81 48)(23 70 82 43)(24 65 83 46)(33 90 76 50)(34 93 77 53)(35 96 78 56)(36 91 79 51)(37 94 80 54)(38 89 73 49)(39 92 74 52)(40 95 75 55)
(1 57)(2 62)(3 59)(4 64)(5 61)(6 58)(7 63)(8 60)(9 13)(11 15)(17 37)(18 34)(19 39)(20 36)(21 33)(22 38)(23 35)(24 40)(25 29)(27 31)(41 90)(42 95)(43 92)(44 89)(45 94)(46 91)(47 96)(48 93)(49 71)(50 68)(51 65)(52 70)(53 67)(54 72)(55 69)(56 66)(73 81)(74 86)(75 83)(76 88)(77 85)(78 82)(79 87)(80 84)

G:=sub<Sym(96)| (1,17,76)(2,77,18)(3,19,78)(4,79,20)(5,21,80)(6,73,22)(7,23,74)(8,75,24)(9,55,65)(10,66,56)(11,49,67)(12,68,50)(13,51,69)(14,70,52)(15,53,71)(16,72,54)(25,89,48)(26,41,90)(27,91,42)(28,43,92)(29,93,44)(30,45,94)(31,95,46)(32,47,96)(33,61,84)(34,85,62)(35,63,86)(36,87,64)(37,57,88)(38,81,58)(39,59,82)(40,83,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,12,61,26)(2,15,62,29)(3,10,63,32)(4,13,64,27)(5,16,57,30)(6,11,58,25)(7,14,59,28)(8,9,60,31)(17,68,84,41)(18,71,85,44)(19,66,86,47)(20,69,87,42)(21,72,88,45)(22,67,81,48)(23,70,82,43)(24,65,83,46)(33,90,76,50)(34,93,77,53)(35,96,78,56)(36,91,79,51)(37,94,80,54)(38,89,73,49)(39,92,74,52)(40,95,75,55), (1,57)(2,62)(3,59)(4,64)(5,61)(6,58)(7,63)(8,60)(9,13)(11,15)(17,37)(18,34)(19,39)(20,36)(21,33)(22,38)(23,35)(24,40)(25,29)(27,31)(41,90)(42,95)(43,92)(44,89)(45,94)(46,91)(47,96)(48,93)(49,71)(50,68)(51,65)(52,70)(53,67)(54,72)(55,69)(56,66)(73,81)(74,86)(75,83)(76,88)(77,85)(78,82)(79,87)(80,84)>;

G:=Group( (1,17,76)(2,77,18)(3,19,78)(4,79,20)(5,21,80)(6,73,22)(7,23,74)(8,75,24)(9,55,65)(10,66,56)(11,49,67)(12,68,50)(13,51,69)(14,70,52)(15,53,71)(16,72,54)(25,89,48)(26,41,90)(27,91,42)(28,43,92)(29,93,44)(30,45,94)(31,95,46)(32,47,96)(33,61,84)(34,85,62)(35,63,86)(36,87,64)(37,57,88)(38,81,58)(39,59,82)(40,83,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,12,61,26)(2,15,62,29)(3,10,63,32)(4,13,64,27)(5,16,57,30)(6,11,58,25)(7,14,59,28)(8,9,60,31)(17,68,84,41)(18,71,85,44)(19,66,86,47)(20,69,87,42)(21,72,88,45)(22,67,81,48)(23,70,82,43)(24,65,83,46)(33,90,76,50)(34,93,77,53)(35,96,78,56)(36,91,79,51)(37,94,80,54)(38,89,73,49)(39,92,74,52)(40,95,75,55), (1,57)(2,62)(3,59)(4,64)(5,61)(6,58)(7,63)(8,60)(9,13)(11,15)(17,37)(18,34)(19,39)(20,36)(21,33)(22,38)(23,35)(24,40)(25,29)(27,31)(41,90)(42,95)(43,92)(44,89)(45,94)(46,91)(47,96)(48,93)(49,71)(50,68)(51,65)(52,70)(53,67)(54,72)(55,69)(56,66)(73,81)(74,86)(75,83)(76,88)(77,85)(78,82)(79,87)(80,84) );

G=PermutationGroup([[(1,17,76),(2,77,18),(3,19,78),(4,79,20),(5,21,80),(6,73,22),(7,23,74),(8,75,24),(9,55,65),(10,66,56),(11,49,67),(12,68,50),(13,51,69),(14,70,52),(15,53,71),(16,72,54),(25,89,48),(26,41,90),(27,91,42),(28,43,92),(29,93,44),(30,45,94),(31,95,46),(32,47,96),(33,61,84),(34,85,62),(35,63,86),(36,87,64),(37,57,88),(38,81,58),(39,59,82),(40,83,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,12,61,26),(2,15,62,29),(3,10,63,32),(4,13,64,27),(5,16,57,30),(6,11,58,25),(7,14,59,28),(8,9,60,31),(17,68,84,41),(18,71,85,44),(19,66,86,47),(20,69,87,42),(21,72,88,45),(22,67,81,48),(23,70,82,43),(24,65,83,46),(33,90,76,50),(34,93,77,53),(35,96,78,56),(36,91,79,51),(37,94,80,54),(38,89,73,49),(39,92,74,52),(40,95,75,55)], [(1,57),(2,62),(3,59),(4,64),(5,61),(6,58),(7,63),(8,60),(9,13),(11,15),(17,37),(18,34),(19,39),(20,36),(21,33),(22,38),(23,35),(24,40),(25,29),(27,31),(41,90),(42,95),(43,92),(44,89),(45,94),(46,91),(47,96),(48,93),(49,71),(50,68),(51,65),(52,70),(53,67),(54,72),(55,69),(56,66),(73,81),(74,86),(75,83),(76,88),(77,85),(78,82),(79,87),(80,84)]])

Matrix representation of C3⋊C8.D4 in GL6(𝔽73)

0720000
1720000
00727210
0010072
0000072
0000172
,
0270000
2700000
0053536220
0000620
000536262
0053535131
,
7590000
14660000
0060663340
000533333
006659207
00766013
,
0720000
7200000
0001072
0010072
0000172
0000072

G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,1,0,0,1,0,0,0,72,72,72],[0,27,0,0,0,0,27,0,0,0,0,0,0,0,53,0,0,53,0,0,53,0,53,53,0,0,62,62,62,51,0,0,20,0,62,31],[7,14,0,0,0,0,59,66,0,0,0,0,0,0,60,0,66,7,0,0,66,53,59,66,0,0,33,33,20,0,0,0,40,33,7,13],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,72,72,72,72] >;

C3⋊C8.D4 in GAP, Magma, Sage, TeX

C_3\rtimes C_8.D_4
% in TeX

G:=Group("C3:C8.D4");
// GroupNames label

G:=SmallGroup(192,375);
// by ID

G=gap.SmallGroup(192,375);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,1094,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=b^3,d*b*d=b^5,d*c*d=b^4*c^-1>;
// generators/relations

Export

Character table of C3⋊C8.D4 in TeX

׿
×
𝔽