Copied to
clipboard

G = Dic3⋊SD16order 192 = 26·3

1st semidirect product of Dic3 and SD16 acting via SD16/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.11D4, Dic32SD16, C4.96(S3×D4), C4⋊C4.156D6, (C2×C8).126D6, (C2×Q8).47D6, Dic3⋊C814C2, Q8⋊C414S3, C4.7(C4○D12), C12.128(C2×D4), C31(D4.D4), C6.33(C2×SD16), C2.19(S3×SD16), Dic3⋊Q82C2, Dic35D4.3C2, C12.23(C4○D4), C6.SD1613C2, C6.27(C4⋊D4), (C2×Dic3).35D4, C22.207(S3×D4), (C6×Q8).41C22, C2.30(Dic3⋊D4), (C2×C24).137C22, (C2×C12).258C23, C2.19(Q16⋊S3), (C2×D12).68C22, C6.66(C8.C22), (C2×Dic6).75C22, (C4×Dic3).25C22, (C2×C24⋊C2).4C2, (C2×C6).271(C2×D4), (C2×C3⋊C8).48C22, (C3×Q8⋊C4)⋊14C2, (C3×C4⋊C4).59C22, (C2×Q82S3).3C2, (C2×C4).365(C22×S3), SmallGroup(192,377)

Series: Derived Chief Lower central Upper central

C1C2×C12 — Dic3⋊SD16
C1C3C6C2×C6C2×C12C2×D12Dic35D4 — Dic3⋊SD16
C3C6C2×C12 — Dic3⋊SD16
C1C22C2×C4Q8⋊C4

Generators and relations for Dic3⋊SD16
 G = < a,b,c,d | a6=c8=d2=1, b2=a3, bab-1=cac-1=dad=a-1, cbc-1=a3b, bd=db, dcd=c3 >

Subgroups: 376 in 120 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, Q8⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, C24⋊C2, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, D6⋊C4, Q82S3, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, C6×Q8, D4.D4, C6.SD16, Dic3⋊C8, C3×Q8⋊C4, Dic35D4, C2×C24⋊C2, C2×Q82S3, Dic3⋊Q8, Dic3⋊SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, C22×S3, C4⋊D4, C2×SD16, C8.C22, C4○D12, S3×D4, D4.D4, Dic3⋊D4, S3×SD16, Q16⋊S3, Dic3⋊SD16

Smallest permutation representation of Dic3⋊SD16
On 96 points
Generators in S96
(1 83 55 59 34 15)(2 16 35 60 56 84)(3 85 49 61 36 9)(4 10 37 62 50 86)(5 87 51 63 38 11)(6 12 39 64 52 88)(7 81 53 57 40 13)(8 14 33 58 54 82)(17 42 28 68 90 74)(18 75 91 69 29 43)(19 44 30 70 92 76)(20 77 93 71 31 45)(21 46 32 72 94 78)(22 79 95 65 25 47)(23 48 26 66 96 80)(24 73 89 67 27 41)
(1 69 59 18)(2 19 60 70)(3 71 61 20)(4 21 62 72)(5 65 63 22)(6 23 64 66)(7 67 57 24)(8 17 58 68)(9 31 49 77)(10 78 50 32)(11 25 51 79)(12 80 52 26)(13 27 53 73)(14 74 54 28)(15 29 55 75)(16 76 56 30)(33 90 82 42)(34 43 83 91)(35 92 84 44)(36 45 85 93)(37 94 86 46)(38 47 87 95)(39 96 88 48)(40 41 81 89)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 4)(3 7)(6 8)(9 81)(10 84)(11 87)(12 82)(13 85)(14 88)(15 83)(16 86)(17 23)(19 21)(20 24)(25 95)(26 90)(27 93)(28 96)(29 91)(30 94)(31 89)(32 92)(33 52)(34 55)(35 50)(36 53)(37 56)(38 51)(39 54)(40 49)(41 77)(42 80)(43 75)(44 78)(45 73)(46 76)(47 79)(48 74)(57 61)(58 64)(60 62)(66 68)(67 71)(70 72)

G:=sub<Sym(96)| (1,83,55,59,34,15)(2,16,35,60,56,84)(3,85,49,61,36,9)(4,10,37,62,50,86)(5,87,51,63,38,11)(6,12,39,64,52,88)(7,81,53,57,40,13)(8,14,33,58,54,82)(17,42,28,68,90,74)(18,75,91,69,29,43)(19,44,30,70,92,76)(20,77,93,71,31,45)(21,46,32,72,94,78)(22,79,95,65,25,47)(23,48,26,66,96,80)(24,73,89,67,27,41), (1,69,59,18)(2,19,60,70)(3,71,61,20)(4,21,62,72)(5,65,63,22)(6,23,64,66)(7,67,57,24)(8,17,58,68)(9,31,49,77)(10,78,50,32)(11,25,51,79)(12,80,52,26)(13,27,53,73)(14,74,54,28)(15,29,55,75)(16,76,56,30)(33,90,82,42)(34,43,83,91)(35,92,84,44)(36,45,85,93)(37,94,86,46)(38,47,87,95)(39,96,88,48)(40,41,81,89), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,81)(10,84)(11,87)(12,82)(13,85)(14,88)(15,83)(16,86)(17,23)(19,21)(20,24)(25,95)(26,90)(27,93)(28,96)(29,91)(30,94)(31,89)(32,92)(33,52)(34,55)(35,50)(36,53)(37,56)(38,51)(39,54)(40,49)(41,77)(42,80)(43,75)(44,78)(45,73)(46,76)(47,79)(48,74)(57,61)(58,64)(60,62)(66,68)(67,71)(70,72)>;

G:=Group( (1,83,55,59,34,15)(2,16,35,60,56,84)(3,85,49,61,36,9)(4,10,37,62,50,86)(5,87,51,63,38,11)(6,12,39,64,52,88)(7,81,53,57,40,13)(8,14,33,58,54,82)(17,42,28,68,90,74)(18,75,91,69,29,43)(19,44,30,70,92,76)(20,77,93,71,31,45)(21,46,32,72,94,78)(22,79,95,65,25,47)(23,48,26,66,96,80)(24,73,89,67,27,41), (1,69,59,18)(2,19,60,70)(3,71,61,20)(4,21,62,72)(5,65,63,22)(6,23,64,66)(7,67,57,24)(8,17,58,68)(9,31,49,77)(10,78,50,32)(11,25,51,79)(12,80,52,26)(13,27,53,73)(14,74,54,28)(15,29,55,75)(16,76,56,30)(33,90,82,42)(34,43,83,91)(35,92,84,44)(36,45,85,93)(37,94,86,46)(38,47,87,95)(39,96,88,48)(40,41,81,89), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,81)(10,84)(11,87)(12,82)(13,85)(14,88)(15,83)(16,86)(17,23)(19,21)(20,24)(25,95)(26,90)(27,93)(28,96)(29,91)(30,94)(31,89)(32,92)(33,52)(34,55)(35,50)(36,53)(37,56)(38,51)(39,54)(40,49)(41,77)(42,80)(43,75)(44,78)(45,73)(46,76)(47,79)(48,74)(57,61)(58,64)(60,62)(66,68)(67,71)(70,72) );

G=PermutationGroup([[(1,83,55,59,34,15),(2,16,35,60,56,84),(3,85,49,61,36,9),(4,10,37,62,50,86),(5,87,51,63,38,11),(6,12,39,64,52,88),(7,81,53,57,40,13),(8,14,33,58,54,82),(17,42,28,68,90,74),(18,75,91,69,29,43),(19,44,30,70,92,76),(20,77,93,71,31,45),(21,46,32,72,94,78),(22,79,95,65,25,47),(23,48,26,66,96,80),(24,73,89,67,27,41)], [(1,69,59,18),(2,19,60,70),(3,71,61,20),(4,21,62,72),(5,65,63,22),(6,23,64,66),(7,67,57,24),(8,17,58,68),(9,31,49,77),(10,78,50,32),(11,25,51,79),(12,80,52,26),(13,27,53,73),(14,74,54,28),(15,29,55,75),(16,76,56,30),(33,90,82,42),(34,43,83,91),(35,92,84,44),(36,45,85,93),(37,94,86,46),(38,47,87,95),(39,96,88,48),(40,41,81,89)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,4),(3,7),(6,8),(9,81),(10,84),(11,87),(12,82),(13,85),(14,88),(15,83),(16,86),(17,23),(19,21),(20,24),(25,95),(26,90),(27,93),(28,96),(29,91),(30,94),(31,89),(32,92),(33,52),(34,55),(35,50),(36,53),(37,56),(38,51),(39,54),(40,49),(41,77),(42,80),(43,75),(44,78),(45,73),(46,76),(47,79),(48,74),(57,61),(58,64),(60,62),(66,68),(67,71),(70,72)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222223444444444666888812121212121224242424
size111112122224466812242224412124488884444

33 irreducible representations

dim1111111122222222244444
type++++++++++++++-++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6SD16C4○D4C4○D12C8.C22S3×D4S3×D4S3×SD16Q16⋊S3
kernelDic3⋊SD16C6.SD16Dic3⋊C8C3×Q8⋊C4Dic35D4C2×C24⋊C2C2×Q82S3Dic3⋊Q8Q8⋊C4D12C2×Dic3C4⋊C4C2×C8C2×Q8Dic3C12C4C6C4C22C2C2
# reps1111111112211142411122

Matrix representation of Dic3⋊SD16 in GL4(𝔽73) generated by

1000
0100
00172
0010
,
1000
0100
00027
00270
,
05500
46100
001330
004360
,
1000
257200
0001
0010
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,1,1,0,0,72,0],[1,0,0,0,0,1,0,0,0,0,0,27,0,0,27,0],[0,4,0,0,55,61,0,0,0,0,13,43,0,0,30,60],[1,25,0,0,0,72,0,0,0,0,0,1,0,0,1,0] >;

Dic3⋊SD16 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes {\rm SD}_{16}
% in TeX

G:=Group("Dic3:SD16");
// GroupNames label

G:=SmallGroup(192,377);
// by ID

G=gap.SmallGroup(192,377);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,219,184,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^8=d^2=1,b^2=a^3,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽