Copied to
clipboard

G = D6:1Q16order 192 = 26·3

1st semidirect product of D6 and Q16 acting via Q16/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:1Q16, C3:C8.28D4, C4:C4.29D6, Q8:C4:3S3, (C2xC8).211D6, C4.168(S3xD4), (C2xQ8).43D6, C6.19(C2xQ16), C2.11(S3xQ16), C6.49(C4oD8), C6.Q16:11C2, C12.126(C2xD4), C3:1(C8.18D4), C4.D12.2C2, D6:3Q8.3C2, C12.21(C4oD4), C4.34(C4oD12), C6.25(C4:D4), C2.Dic12:29C2, (C2xDic3).95D4, (C22xS3).51D4, C22.203(S3xD4), (C6xQ8).36C22, C2.28(Dic3:D4), (C2xC12).253C23, (C2xC24).245C22, C4:Dic3.97C22, C2.18(Q8.7D6), (C2xDic6).73C22, (S3xC2xC8).12C2, (C2xC3:Q16):5C2, (C2xC6).266(C2xD4), (C3xQ8:C4):28C2, (C3xC4:C4).54C22, (C2xC3:C8).221C22, (S3xC2xC4).229C22, (C2xC4).360(C22xS3), SmallGroup(192,372)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D6:1Q16
C1C3C6C12C2xC12S3xC2xC4S3xC2xC8 — D6:1Q16
C3C6C2xC12 — D6:1Q16
C1C22C2xC4Q8:C4

Generators and relations for D6:1Q16
 G = < a,b,c,d | a6=b2=c8=1, d2=c4, bab=cac-1=a-1, ad=da, cbc-1=a4b, dbd-1=a3b, dcd-1=c-1 >

Subgroups: 312 in 114 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, Q8, C23, Dic3, C12, C12, D6, D6, C2xC6, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, Q16, C22xC4, C2xQ8, C2xQ8, C3:C8, C24, Dic6, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, Q8:C4, Q8:C4, C2.D8, C22:Q8, C22xC8, C2xQ16, S3xC8, C2xC3:C8, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C3:Q16, C3xC4:C4, C2xC24, C2xDic6, S3xC2xC4, C6xQ8, C8.18D4, C6.Q16, C2.Dic12, C3xQ8:C4, C4.D12, S3xC2xC8, C2xC3:Q16, D6:3Q8, D6:1Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2xD4, C4oD4, C22xS3, C4:D4, C2xQ16, C4oD8, C4oD12, S3xD4, C8.18D4, Dic3:D4, Q8.7D6, S3xQ16, D6:1Q16

Smallest permutation representation of D6:1Q16
On 96 points
Generators in S96
(1 93 35 71 21 30)(2 31 22 72 36 94)(3 95 37 65 23 32)(4 25 24 66 38 96)(5 89 39 67 17 26)(6 27 18 68 40 90)(7 91 33 69 19 28)(8 29 20 70 34 92)(9 50 59 83 41 73)(10 74 42 84 60 51)(11 52 61 85 43 75)(12 76 44 86 62 53)(13 54 63 87 45 77)(14 78 46 88 64 55)(15 56 57 81 47 79)(16 80 48 82 58 49)
(1 30)(2 94)(3 32)(4 96)(5 26)(6 90)(7 28)(8 92)(9 41)(11 43)(13 45)(15 47)(17 89)(18 68)(19 91)(20 70)(21 93)(22 72)(23 95)(24 66)(25 38)(27 40)(29 34)(31 36)(33 69)(35 71)(37 65)(39 67)(42 60)(44 62)(46 64)(48 58)(49 80)(50 83)(51 74)(52 85)(53 76)(54 87)(55 78)(56 81)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 47 5 43)(2 46 6 42)(3 45 7 41)(4 44 8 48)(9 37 13 33)(10 36 14 40)(11 35 15 39)(12 34 16 38)(17 61 21 57)(18 60 22 64)(19 59 23 63)(20 58 24 62)(25 86 29 82)(26 85 30 81)(27 84 31 88)(28 83 32 87)(49 66 53 70)(50 65 54 69)(51 72 55 68)(52 71 56 67)(73 95 77 91)(74 94 78 90)(75 93 79 89)(76 92 80 96)

G:=sub<Sym(96)| (1,93,35,71,21,30)(2,31,22,72,36,94)(3,95,37,65,23,32)(4,25,24,66,38,96)(5,89,39,67,17,26)(6,27,18,68,40,90)(7,91,33,69,19,28)(8,29,20,70,34,92)(9,50,59,83,41,73)(10,74,42,84,60,51)(11,52,61,85,43,75)(12,76,44,86,62,53)(13,54,63,87,45,77)(14,78,46,88,64,55)(15,56,57,81,47,79)(16,80,48,82,58,49), (1,30)(2,94)(3,32)(4,96)(5,26)(6,90)(7,28)(8,92)(9,41)(11,43)(13,45)(15,47)(17,89)(18,68)(19,91)(20,70)(21,93)(22,72)(23,95)(24,66)(25,38)(27,40)(29,34)(31,36)(33,69)(35,71)(37,65)(39,67)(42,60)(44,62)(46,64)(48,58)(49,80)(50,83)(51,74)(52,85)(53,76)(54,87)(55,78)(56,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,47,5,43)(2,46,6,42)(3,45,7,41)(4,44,8,48)(9,37,13,33)(10,36,14,40)(11,35,15,39)(12,34,16,38)(17,61,21,57)(18,60,22,64)(19,59,23,63)(20,58,24,62)(25,86,29,82)(26,85,30,81)(27,84,31,88)(28,83,32,87)(49,66,53,70)(50,65,54,69)(51,72,55,68)(52,71,56,67)(73,95,77,91)(74,94,78,90)(75,93,79,89)(76,92,80,96)>;

G:=Group( (1,93,35,71,21,30)(2,31,22,72,36,94)(3,95,37,65,23,32)(4,25,24,66,38,96)(5,89,39,67,17,26)(6,27,18,68,40,90)(7,91,33,69,19,28)(8,29,20,70,34,92)(9,50,59,83,41,73)(10,74,42,84,60,51)(11,52,61,85,43,75)(12,76,44,86,62,53)(13,54,63,87,45,77)(14,78,46,88,64,55)(15,56,57,81,47,79)(16,80,48,82,58,49), (1,30)(2,94)(3,32)(4,96)(5,26)(6,90)(7,28)(8,92)(9,41)(11,43)(13,45)(15,47)(17,89)(18,68)(19,91)(20,70)(21,93)(22,72)(23,95)(24,66)(25,38)(27,40)(29,34)(31,36)(33,69)(35,71)(37,65)(39,67)(42,60)(44,62)(46,64)(48,58)(49,80)(50,83)(51,74)(52,85)(53,76)(54,87)(55,78)(56,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,47,5,43)(2,46,6,42)(3,45,7,41)(4,44,8,48)(9,37,13,33)(10,36,14,40)(11,35,15,39)(12,34,16,38)(17,61,21,57)(18,60,22,64)(19,59,23,63)(20,58,24,62)(25,86,29,82)(26,85,30,81)(27,84,31,88)(28,83,32,87)(49,66,53,70)(50,65,54,69)(51,72,55,68)(52,71,56,67)(73,95,77,91)(74,94,78,90)(75,93,79,89)(76,92,80,96) );

G=PermutationGroup([[(1,93,35,71,21,30),(2,31,22,72,36,94),(3,95,37,65,23,32),(4,25,24,66,38,96),(5,89,39,67,17,26),(6,27,18,68,40,90),(7,91,33,69,19,28),(8,29,20,70,34,92),(9,50,59,83,41,73),(10,74,42,84,60,51),(11,52,61,85,43,75),(12,76,44,86,62,53),(13,54,63,87,45,77),(14,78,46,88,64,55),(15,56,57,81,47,79),(16,80,48,82,58,49)], [(1,30),(2,94),(3,32),(4,96),(5,26),(6,90),(7,28),(8,92),(9,41),(11,43),(13,45),(15,47),(17,89),(18,68),(19,91),(20,70),(21,93),(22,72),(23,95),(24,66),(25,38),(27,40),(29,34),(31,36),(33,69),(35,71),(37,65),(39,67),(42,60),(44,62),(46,64),(48,58),(49,80),(50,83),(51,74),(52,85),(53,76),(54,87),(55,78),(56,81)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,47,5,43),(2,46,6,42),(3,45,7,41),(4,44,8,48),(9,37,13,33),(10,36,14,40),(11,35,15,39),(12,34,16,38),(17,61,21,57),(18,60,22,64),(19,59,23,63),(20,58,24,62),(25,86,29,82),(26,85,30,81),(27,84,31,88),(28,83,32,87),(49,66,53,70),(50,65,54,69),(51,72,55,68),(52,71,56,67),(73,95,77,91),(74,94,78,90),(75,93,79,89),(76,92,80,96)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222223444444446668888888812121212121224242424
size11116622266882424222222266664488884444

36 irreducible representations

dim11111111222222222224444
type+++++++++++++++-++-
imageC1C2C2C2C2C2C2C2S3D4D4D4D6D6D6C4oD4Q16C4oD8C4oD12S3xD4S3xD4Q8.7D6S3xQ16
kernelD6:1Q16C6.Q16C2.Dic12C3xQ8:C4C4.D12S3xC2xC8C2xC3:Q16D6:3Q8Q8:C4C3:C8C2xDic3C22xS3C4:C4C2xC8C2xQ8C12D6C6C4C4C22C2C2
# reps11111111121111124441122

Matrix representation of D6:1Q16 in GL6(F73)

100000
010000
0072000
0007200
0000072
0000172
,
100000
010000
0072000
006100
0000172
0000072
,
16570000
16160000
0027000
00574600
0000072
0000720
,
13660000
66600000
006200
00196700
0000720
0000072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,6,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,72,72],[16,16,0,0,0,0,57,16,0,0,0,0,0,0,27,57,0,0,0,0,0,46,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[13,66,0,0,0,0,66,60,0,0,0,0,0,0,6,19,0,0,0,0,2,67,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;

D6:1Q16 in GAP, Magma, Sage, TeX

D_6\rtimes_1Q_{16}
% in TeX

G:=Group("D6:1Q16");
// GroupNames label

G:=SmallGroup(192,372);
// by ID

G=gap.SmallGroup(192,372);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,555,184,297,136,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=c^4,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^4*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<