Copied to
clipboard

G = D62SD16order 192 = 26·3

2nd semidirect product of D6 and SD16 acting via SD16/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D62SD16, C3⋊C821D4, C32(C88D4), C4⋊C4.24D6, Q8⋊C42S3, D63Q81C2, C4.166(S3×D4), (C2×C8).210D6, (C2×Q8).40D6, C12⋊D4.2C2, C6.69(C4○D8), C2.D2429C2, C12.121(C2×D4), C6.32(C2×SD16), C2.18(S3×SD16), C4.32(C4○D12), C12.19(C4○D4), C6.23(C4⋊D4), C12.Q811C2, (C2×Dic3).94D4, (C22×S3).50D4, C22.197(S3×D4), (C6×Q8).30C22, C2.8(D24⋊C2), C2.26(Dic3⋊D4), (C2×C24).243C22, (C2×C12).247C23, (C2×D12).63C22, C4⋊Dic3.94C22, (S3×C2×C8)⋊21C2, (C2×Q82S3)⋊3C2, (C2×C6).260(C2×D4), (C3×Q8⋊C4)⋊26C2, (C3×C4⋊C4).48C22, (C2×C3⋊C8).220C22, (S3×C2×C4).228C22, (C2×C4).354(C22×S3), SmallGroup(192,366)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D62SD16
C1C3C6C12C2×C12S3×C2×C4S3×C2×C8 — D62SD16
C3C6C2×C12 — D62SD16
C1C22C2×C4Q8⋊C4

Generators and relations for D62SD16
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=cac-1=dad=a-1, cbc-1=a4b, dbd=ab, dcd=c3 >

Subgroups: 408 in 124 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C22×S3, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, S3×C8, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D6⋊C4, Q82S3, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C2×D12, C6×Q8, C88D4, C12.Q8, C2.D24, C3×Q8⋊C4, C12⋊D4, S3×C2×C8, C2×Q82S3, D63Q8, D62SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, C22×S3, C4⋊D4, C2×SD16, C4○D8, C4○D12, S3×D4, C88D4, Dic3⋊D4, S3×SD16, D24⋊C2, D62SD16

Smallest permutation representation of D62SD16
On 96 points
Generators in S96
(1 85 45 77 23 60)(2 61 24 78 46 86)(3 87 47 79 17 62)(4 63 18 80 48 88)(5 81 41 73 19 64)(6 57 20 74 42 82)(7 83 43 75 21 58)(8 59 22 76 44 84)(9 53 93 67 39 32)(10 25 40 68 94 54)(11 55 95 69 33 26)(12 27 34 70 96 56)(13 49 89 71 35 28)(14 29 36 72 90 50)(15 51 91 65 37 30)(16 31 38 66 92 52)
(1 33)(2 12)(3 35)(4 14)(5 37)(6 16)(7 39)(8 10)(9 21)(11 23)(13 17)(15 19)(18 90)(20 92)(22 94)(24 96)(25 84)(26 60)(27 86)(28 62)(29 88)(30 64)(31 82)(32 58)(34 46)(36 48)(38 42)(40 44)(41 91)(43 93)(45 95)(47 89)(49 79)(50 63)(51 73)(52 57)(53 75)(54 59)(55 77)(56 61)(65 81)(66 74)(67 83)(68 76)(69 85)(70 78)(71 87)(72 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 5)(2 8)(4 6)(9 53)(10 56)(11 51)(12 54)(13 49)(14 52)(15 55)(16 50)(17 47)(18 42)(19 45)(20 48)(21 43)(22 46)(23 41)(24 44)(25 96)(26 91)(27 94)(28 89)(29 92)(30 95)(31 90)(32 93)(33 65)(34 68)(35 71)(36 66)(37 69)(38 72)(39 67)(40 70)(57 88)(58 83)(59 86)(60 81)(61 84)(62 87)(63 82)(64 85)(73 77)(74 80)(76 78)

G:=sub<Sym(96)| (1,85,45,77,23,60)(2,61,24,78,46,86)(3,87,47,79,17,62)(4,63,18,80,48,88)(5,81,41,73,19,64)(6,57,20,74,42,82)(7,83,43,75,21,58)(8,59,22,76,44,84)(9,53,93,67,39,32)(10,25,40,68,94,54)(11,55,95,69,33,26)(12,27,34,70,96,56)(13,49,89,71,35,28)(14,29,36,72,90,50)(15,51,91,65,37,30)(16,31,38,66,92,52), (1,33)(2,12)(3,35)(4,14)(5,37)(6,16)(7,39)(8,10)(9,21)(11,23)(13,17)(15,19)(18,90)(20,92)(22,94)(24,96)(25,84)(26,60)(27,86)(28,62)(29,88)(30,64)(31,82)(32,58)(34,46)(36,48)(38,42)(40,44)(41,91)(43,93)(45,95)(47,89)(49,79)(50,63)(51,73)(52,57)(53,75)(54,59)(55,77)(56,61)(65,81)(66,74)(67,83)(68,76)(69,85)(70,78)(71,87)(72,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,5)(2,8)(4,6)(9,53)(10,56)(11,51)(12,54)(13,49)(14,52)(15,55)(16,50)(17,47)(18,42)(19,45)(20,48)(21,43)(22,46)(23,41)(24,44)(25,96)(26,91)(27,94)(28,89)(29,92)(30,95)(31,90)(32,93)(33,65)(34,68)(35,71)(36,66)(37,69)(38,72)(39,67)(40,70)(57,88)(58,83)(59,86)(60,81)(61,84)(62,87)(63,82)(64,85)(73,77)(74,80)(76,78)>;

G:=Group( (1,85,45,77,23,60)(2,61,24,78,46,86)(3,87,47,79,17,62)(4,63,18,80,48,88)(5,81,41,73,19,64)(6,57,20,74,42,82)(7,83,43,75,21,58)(8,59,22,76,44,84)(9,53,93,67,39,32)(10,25,40,68,94,54)(11,55,95,69,33,26)(12,27,34,70,96,56)(13,49,89,71,35,28)(14,29,36,72,90,50)(15,51,91,65,37,30)(16,31,38,66,92,52), (1,33)(2,12)(3,35)(4,14)(5,37)(6,16)(7,39)(8,10)(9,21)(11,23)(13,17)(15,19)(18,90)(20,92)(22,94)(24,96)(25,84)(26,60)(27,86)(28,62)(29,88)(30,64)(31,82)(32,58)(34,46)(36,48)(38,42)(40,44)(41,91)(43,93)(45,95)(47,89)(49,79)(50,63)(51,73)(52,57)(53,75)(54,59)(55,77)(56,61)(65,81)(66,74)(67,83)(68,76)(69,85)(70,78)(71,87)(72,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,5)(2,8)(4,6)(9,53)(10,56)(11,51)(12,54)(13,49)(14,52)(15,55)(16,50)(17,47)(18,42)(19,45)(20,48)(21,43)(22,46)(23,41)(24,44)(25,96)(26,91)(27,94)(28,89)(29,92)(30,95)(31,90)(32,93)(33,65)(34,68)(35,71)(36,66)(37,69)(38,72)(39,67)(40,70)(57,88)(58,83)(59,86)(60,81)(61,84)(62,87)(63,82)(64,85)(73,77)(74,80)(76,78) );

G=PermutationGroup([[(1,85,45,77,23,60),(2,61,24,78,46,86),(3,87,47,79,17,62),(4,63,18,80,48,88),(5,81,41,73,19,64),(6,57,20,74,42,82),(7,83,43,75,21,58),(8,59,22,76,44,84),(9,53,93,67,39,32),(10,25,40,68,94,54),(11,55,95,69,33,26),(12,27,34,70,96,56),(13,49,89,71,35,28),(14,29,36,72,90,50),(15,51,91,65,37,30),(16,31,38,66,92,52)], [(1,33),(2,12),(3,35),(4,14),(5,37),(6,16),(7,39),(8,10),(9,21),(11,23),(13,17),(15,19),(18,90),(20,92),(22,94),(24,96),(25,84),(26,60),(27,86),(28,62),(29,88),(30,64),(31,82),(32,58),(34,46),(36,48),(38,42),(40,44),(41,91),(43,93),(45,95),(47,89),(49,79),(50,63),(51,73),(52,57),(53,75),(54,59),(55,77),(56,61),(65,81),(66,74),(67,83),(68,76),(69,85),(70,78),(71,87),(72,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,5),(2,8),(4,6),(9,53),(10,56),(11,51),(12,54),(13,49),(14,52),(15,55),(16,50),(17,47),(18,42),(19,45),(20,48),(21,43),(22,46),(23,41),(24,44),(25,96),(26,91),(27,94),(28,89),(29,92),(30,95),(31,90),(32,93),(33,65),(34,68),(35,71),(36,66),(37,69),(38,72),(39,67),(40,70),(57,88),(58,83),(59,86),(60,81),(61,84),(62,87),(63,82),(64,85),(73,77),(74,80),(76,78)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222222344444446668888888812121212121224242424
size11116624222668824222222266664488884444

36 irreducible representations

dim11111111222222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D6D6D6C4○D4SD16C4○D8C4○D12S3×D4S3×D4S3×SD16D24⋊C2
kernelD62SD16C12.Q8C2.D24C3×Q8⋊C4C12⋊D4S3×C2×C8C2×Q82S3D63Q8Q8⋊C4C3⋊C8C2×Dic3C22×S3C4⋊C4C2×C8C2×Q8C12D6C6C4C4C22C2C2
# reps11111111121111124441122

Matrix representation of D62SD16 in GL6(𝔽73)

100000
010000
0072000
0007200
0000072
0000172
,
100000
010000
0004600
0027000
0000172
0000072
,
61180000
6900000
00676700
0066700
000001
000010
,
7200000
4810000
001000
0007200
000001
000010

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,27,0,0,0,0,46,0,0,0,0,0,0,0,1,0,0,0,0,0,72,72],[61,69,0,0,0,0,18,0,0,0,0,0,0,0,67,6,0,0,0,0,67,67,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[72,48,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D62SD16 in GAP, Magma, Sage, TeX

D_6\rtimes_2{\rm SD}_{16}
% in TeX

G:=Group("D6:2SD16");
// GroupNames label

G:=SmallGroup(192,366);
// by ID

G=gap.SmallGroup(192,366);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,219,184,297,136,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^4*b,d*b*d=a*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽