Copied to
clipboard

G = C3⋊(C8⋊D4)  order 192 = 26·3

The semidirect product of C3 and C8⋊D4 acting via C8⋊D4/Q8⋊C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3⋊C83D4, C32(C8⋊D4), C4⋊C4.28D6, D63Q82C2, (C2×C8).177D6, C4.167(S3×D4), (C2×Q8).42D6, Q8⋊C418S3, C12⋊D4.3C2, C12.125(C2×D4), C2.D2430C2, C6.Q1610C2, C4.33(C4○D12), C12.20(C4○D4), C6.24(C4⋊D4), C2.18(Q83D6), C6.64(C8⋊C22), (C2×Dic3).33D4, (C22×S3).19D4, C22.202(S3×D4), (C6×Q8).35C22, C2.27(Dic3⋊D4), (C2×C24).244C22, (C2×C12).252C23, C2.16(Q16⋊S3), (C2×D12).66C22, C6.62(C8.C22), C4⋊Dic3.96C22, (C2×C8⋊S3)⋊20C2, (C2×Q82S3)⋊5C2, (C2×C6).265(C2×D4), (C2×C3⋊C8).43C22, (S3×C2×C4).25C22, (C3×Q8⋊C4)⋊27C2, (C3×C4⋊C4).53C22, (C2×C4).359(C22×S3), SmallGroup(192,371)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C3⋊(C8⋊D4)
C1C3C6C12C2×C12S3×C2×C4C12⋊D4 — C3⋊(C8⋊D4)
C3C6C2×C12 — C3⋊(C8⋊D4)
C1C22C2×C4Q8⋊C4

Generators and relations for C3⋊(C8⋊D4)
 G = < a,b,c,d | a3=b8=c4=d2=1, bab-1=dad=a-1, ac=ca, cbc-1=b-1, dbd=b3, dcd=c-1 >

Subgroups: 408 in 120 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C22×S3, D4⋊C4, Q8⋊C4, C2.D8, C4⋊D4, C22⋊Q8, C2×M4(2), C2×SD16, C8⋊S3, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D6⋊C4, Q82S3, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C2×D12, C6×Q8, C8⋊D4, C6.Q16, C2.D24, C3×Q8⋊C4, C12⋊D4, C2×C8⋊S3, C2×Q82S3, D63Q8, C3⋊(C8⋊D4)
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4⋊D4, C8⋊C22, C8.C22, C4○D12, S3×D4, C8⋊D4, Dic3⋊D4, Q83D6, Q16⋊S3, C3⋊(C8⋊D4)

Character table of C3⋊(C8⋊D4)

 class 12A2B2C2D2E34A4B4C4D4E4F6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111112242228812242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ21111-1-11111-1-11111-1-11111-111-1-1-1-1-1    linear of order 2
ρ31111-11111-1-1-1111111-1-111-1-1-1-11111    linear of order 2
ρ411111-1111-1111111-1-1-1-1111-1-11-1-1-1-1    linear of order 2
ρ51111111111-11-1111-1-1-1-111-111-1-1-1-1-1    linear of order 2
ρ61111-1-111111-1-111111-1-11111111111    linear of order 2
ρ71111-11111-11-1-1111-1-111111-1-11-1-1-1-1    linear of order 2
ρ811111-1111-1-11-1111111111-1-1-1-11111    linear of order 2
ρ9222200-1222200-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ10222200-1222-200-1-1-1-2-200-1-11-1-111111    orthogonal lifted from D6
ρ112222202-2-200-202220000-2-200000000    orthogonal lifted from D4
ρ1222-2-2002-2200002-2-2002-22-200000000    orthogonal lifted from D4
ρ132222-202-2-200202220000-2-200000000    orthogonal lifted from D4
ρ14222200-122-2-200-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ1522-2-2002-2200002-2-200-222-200000000    orthogonal lifted from D4
ρ16222200-122-2200-1-1-1-2-200-1-1-111-11111    orthogonal lifted from D6
ρ1722-2-20022-200002-2-22i-2i00-220000-2i2i2i-2i    complex lifted from C4○D4
ρ1822-2-20022-200002-2-2-2i2i00-2200002i-2i-2i2i    complex lifted from C4○D4
ρ1922-2-200-12-20000-1112i-2i001-1-3-33--3i-i-ii    complex lifted from C4○D12
ρ2022-2-200-12-20000-1112i-2i001-1--33-3-3i-i-ii    complex lifted from C4○D12
ρ2122-2-200-12-20000-111-2i2i001-1--3-33-3-iii-i    complex lifted from C4○D12
ρ2222-2-200-12-20000-111-2i2i001-1-33-3--3-iii-i    complex lifted from C4○D12
ρ234-44-4004000000-4-4400000000000000    orthogonal lifted from C8⋊C22
ρ2444-4-400-2-440000-2220000-2200000000    orthogonal lifted from S3×D4
ρ25444400-2-4-40000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ264-44-400-200000022-20000000000-66-66    orthogonal lifted from Q83D6
ρ274-44-400-200000022-200000000006-66-6    orthogonal lifted from Q83D6
ρ284-4-44004000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ294-4-4400-20000002-220000000000-6-6--6--6    complex lifted from Q16⋊S3
ρ304-4-4400-20000002-220000000000--6--6-6-6    complex lifted from Q16⋊S3

Smallest permutation representation of C3⋊(C8⋊D4)
On 96 points
Generators in S96
(1 38 66)(2 67 39)(3 40 68)(4 69 33)(5 34 70)(6 71 35)(7 36 72)(8 65 37)(9 58 82)(10 83 59)(11 60 84)(12 85 61)(13 62 86)(14 87 63)(15 64 88)(16 81 57)(17 25 54)(18 55 26)(19 27 56)(20 49 28)(21 29 50)(22 51 30)(23 31 52)(24 53 32)(41 91 74)(42 75 92)(43 93 76)(44 77 94)(45 95 78)(46 79 96)(47 89 80)(48 73 90)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 19 83 73)(2 18 84 80)(3 17 85 79)(4 24 86 78)(5 23 87 77)(6 22 88 76)(7 21 81 75)(8 20 82 74)(9 41 65 49)(10 48 66 56)(11 47 67 55)(12 46 68 54)(13 45 69 53)(14 44 70 52)(15 43 71 51)(16 42 72 50)(25 61 96 40)(26 60 89 39)(27 59 90 38)(28 58 91 37)(29 57 92 36)(30 64 93 35)(31 63 94 34)(32 62 95 33)
(1 83)(2 86)(3 81)(4 84)(5 87)(6 82)(7 85)(8 88)(9 35)(10 38)(11 33)(12 36)(13 39)(14 34)(15 37)(16 40)(17 21)(18 24)(20 22)(25 50)(26 53)(27 56)(28 51)(29 54)(30 49)(31 52)(32 55)(41 93)(42 96)(43 91)(44 94)(45 89)(46 92)(47 95)(48 90)(57 68)(58 71)(59 66)(60 69)(61 72)(62 67)(63 70)(64 65)(74 76)(75 79)(78 80)

G:=sub<Sym(96)| (1,38,66)(2,67,39)(3,40,68)(4,69,33)(5,34,70)(6,71,35)(7,36,72)(8,65,37)(9,58,82)(10,83,59)(11,60,84)(12,85,61)(13,62,86)(14,87,63)(15,64,88)(16,81,57)(17,25,54)(18,55,26)(19,27,56)(20,49,28)(21,29,50)(22,51,30)(23,31,52)(24,53,32)(41,91,74)(42,75,92)(43,93,76)(44,77,94)(45,95,78)(46,79,96)(47,89,80)(48,73,90), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,19,83,73)(2,18,84,80)(3,17,85,79)(4,24,86,78)(5,23,87,77)(6,22,88,76)(7,21,81,75)(8,20,82,74)(9,41,65,49)(10,48,66,56)(11,47,67,55)(12,46,68,54)(13,45,69,53)(14,44,70,52)(15,43,71,51)(16,42,72,50)(25,61,96,40)(26,60,89,39)(27,59,90,38)(28,58,91,37)(29,57,92,36)(30,64,93,35)(31,63,94,34)(32,62,95,33), (1,83)(2,86)(3,81)(4,84)(5,87)(6,82)(7,85)(8,88)(9,35)(10,38)(11,33)(12,36)(13,39)(14,34)(15,37)(16,40)(17,21)(18,24)(20,22)(25,50)(26,53)(27,56)(28,51)(29,54)(30,49)(31,52)(32,55)(41,93)(42,96)(43,91)(44,94)(45,89)(46,92)(47,95)(48,90)(57,68)(58,71)(59,66)(60,69)(61,72)(62,67)(63,70)(64,65)(74,76)(75,79)(78,80)>;

G:=Group( (1,38,66)(2,67,39)(3,40,68)(4,69,33)(5,34,70)(6,71,35)(7,36,72)(8,65,37)(9,58,82)(10,83,59)(11,60,84)(12,85,61)(13,62,86)(14,87,63)(15,64,88)(16,81,57)(17,25,54)(18,55,26)(19,27,56)(20,49,28)(21,29,50)(22,51,30)(23,31,52)(24,53,32)(41,91,74)(42,75,92)(43,93,76)(44,77,94)(45,95,78)(46,79,96)(47,89,80)(48,73,90), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,19,83,73)(2,18,84,80)(3,17,85,79)(4,24,86,78)(5,23,87,77)(6,22,88,76)(7,21,81,75)(8,20,82,74)(9,41,65,49)(10,48,66,56)(11,47,67,55)(12,46,68,54)(13,45,69,53)(14,44,70,52)(15,43,71,51)(16,42,72,50)(25,61,96,40)(26,60,89,39)(27,59,90,38)(28,58,91,37)(29,57,92,36)(30,64,93,35)(31,63,94,34)(32,62,95,33), (1,83)(2,86)(3,81)(4,84)(5,87)(6,82)(7,85)(8,88)(9,35)(10,38)(11,33)(12,36)(13,39)(14,34)(15,37)(16,40)(17,21)(18,24)(20,22)(25,50)(26,53)(27,56)(28,51)(29,54)(30,49)(31,52)(32,55)(41,93)(42,96)(43,91)(44,94)(45,89)(46,92)(47,95)(48,90)(57,68)(58,71)(59,66)(60,69)(61,72)(62,67)(63,70)(64,65)(74,76)(75,79)(78,80) );

G=PermutationGroup([[(1,38,66),(2,67,39),(3,40,68),(4,69,33),(5,34,70),(6,71,35),(7,36,72),(8,65,37),(9,58,82),(10,83,59),(11,60,84),(12,85,61),(13,62,86),(14,87,63),(15,64,88),(16,81,57),(17,25,54),(18,55,26),(19,27,56),(20,49,28),(21,29,50),(22,51,30),(23,31,52),(24,53,32),(41,91,74),(42,75,92),(43,93,76),(44,77,94),(45,95,78),(46,79,96),(47,89,80),(48,73,90)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,19,83,73),(2,18,84,80),(3,17,85,79),(4,24,86,78),(5,23,87,77),(6,22,88,76),(7,21,81,75),(8,20,82,74),(9,41,65,49),(10,48,66,56),(11,47,67,55),(12,46,68,54),(13,45,69,53),(14,44,70,52),(15,43,71,51),(16,42,72,50),(25,61,96,40),(26,60,89,39),(27,59,90,38),(28,58,91,37),(29,57,92,36),(30,64,93,35),(31,63,94,34),(32,62,95,33)], [(1,83),(2,86),(3,81),(4,84),(5,87),(6,82),(7,85),(8,88),(9,35),(10,38),(11,33),(12,36),(13,39),(14,34),(15,37),(16,40),(17,21),(18,24),(20,22),(25,50),(26,53),(27,56),(28,51),(29,54),(30,49),(31,52),(32,55),(41,93),(42,96),(43,91),(44,94),(45,89),(46,92),(47,95),(48,90),(57,68),(58,71),(59,66),(60,69),(61,72),(62,67),(63,70),(64,65),(74,76),(75,79),(78,80)]])

Matrix representation of C3⋊(C8⋊D4) in GL6(𝔽73)

100000
010000
0072100
0072000
001001
000727272
,
100000
010000
001357
0072672
005044680
004849071
,
4520000
9280000
009551360
003142613
000186918
004204264
,
7200000
4510000
0007200
0072000
00252510
0024247272

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,1,0,0,0,1,0,0,72,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,72,50,48,0,0,3,6,44,49,0,0,5,7,68,0,0,0,7,2,0,71],[45,9,0,0,0,0,2,28,0,0,0,0,0,0,9,31,0,42,0,0,55,4,18,0,0,0,13,26,69,42,0,0,60,13,18,64],[72,45,0,0,0,0,0,1,0,0,0,0,0,0,0,72,25,24,0,0,72,0,25,24,0,0,0,0,1,72,0,0,0,0,0,72] >;

C3⋊(C8⋊D4) in GAP, Magma, Sage, TeX

C_3\rtimes (C_8\rtimes D_4)
% in TeX

G:=Group("C3:(C8:D4)");
// GroupNames label

G:=SmallGroup(192,371);
// by ID

G=gap.SmallGroup(192,371);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,1094,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=b^-1,d*b*d=b^3,d*c*d=c^-1>;
// generators/relations

Export

Character table of C3⋊(C8⋊D4) in TeX

׿
×
𝔽