Extensions 1→N→G→Q→1 with N=C3 and Q=D4oSD16

Direct product G=NxQ with N=C3 and Q=D4oSD16
dρLabelID
C3xD4oSD16484C3xD4oSD16192,1466

Semidirect products G=N:Q with N=C3 and Q=D4oSD16
extensionφ:Q→Aut NdρLabelID
C3:1(D4oSD16) = D4.11D12φ: D4oSD16/C8oD4C2 ⊆ Aut C3484C3:1(D4oSD16)192,1310
C3:2(D4oSD16) = SD16:13D6φ: D4oSD16/C2xSD16C2 ⊆ Aut C3484C3:2(D4oSD16)192,1321
C3:3(D4oSD16) = D8:11D6φ: D4oSD16/C4oD8C2 ⊆ Aut C3484C3:3(D4oSD16)192,1329
C3:4(D4oSD16) = D8:6D6φ: D4oSD16/C8:C22C2 ⊆ Aut C3488-C3:4(D4oSD16)192,1334
C3:5(D4oSD16) = C24.C23φ: D4oSD16/C8.C22C2 ⊆ Aut C3488+C3:5(D4oSD16)192,1337
C3:6(D4oSD16) = D12.33C23φ: D4oSD16/2+ 1+4C2 ⊆ Aut C3488-C3:6(D4oSD16)192,1395
C3:7(D4oSD16) = D12.34C23φ: D4oSD16/2- 1+4C2 ⊆ Aut C3488+C3:7(D4oSD16)192,1396


׿
x
:
Z
F
o
wr
Q
<