Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C8

Direct product G=N×Q with N=C4×S3 and Q=C8
dρLabelID
S3×C4×C896S3xC4xC8192,243

Semidirect products G=N:Q with N=C4×S3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C8 = S3×C4⋊C8φ: C8/C4C2 ⊆ Out C4×S396(C4xS3):1C8192,391
(C4×S3)⋊2C8 = C42.200D6φ: C8/C4C2 ⊆ Out C4×S396(C4xS3):2C8192,392
(C4×S3)⋊3C8 = C42.282D6φ: C8/C4C2 ⊆ Out C4×S396(C4xS3):3C8192,244

Non-split extensions G=N.Q with N=C4×S3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C4×S3).1C8 = S3×M5(2)φ: C8/C4C2 ⊆ Out C4×S3484(C4xS3).1C8192,465
(C4×S3).2C8 = C96⋊C2φ: C8/C4C2 ⊆ Out C4×S3962(C4xS3).2C8192,6
(C4×S3).3C8 = C2×D6.C8φ: C8/C4C2 ⊆ Out C4×S396(C4xS3).3C8192,459
(C4×S3).4C8 = S3×C32φ: trivial image962(C4xS3).4C8192,5
(C4×S3).5C8 = S3×C2×C16φ: trivial image96(C4xS3).5C8192,458

׿
×
𝔽