Copied to
clipboard

G = S3×C32order 192 = 26·3

Direct product of C32 and S3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C32, C965C2, D6.2C16, C16.19D6, C48.24C22, Dic3.2C16, C3⋊C326C2, C31(C2×C32), C3⋊C8.4C8, C3⋊C16.3C4, (C4×S3).4C8, (S3×C8).5C4, C4.16(S3×C8), C8.36(C4×S3), C2.1(S3×C16), C6.1(C2×C16), (S3×C16).3C2, C24.57(C2×C4), C12.21(C2×C8), SmallGroup(192,5)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C32
C1C3C6C12C24C48S3×C16 — S3×C32
C3 — S3×C32
C1C32

Generators and relations for S3×C32
 G = < a,b,c | a32=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
3C22
3C4
3C2×C4
3C8
3C2×C8
3C16
3C2×C16
3C32
3C2×C32

Smallest permutation representation of S3×C32
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 94 48)(2 95 49)(3 96 50)(4 65 51)(5 66 52)(6 67 53)(7 68 54)(8 69 55)(9 70 56)(10 71 57)(11 72 58)(12 73 59)(13 74 60)(14 75 61)(15 76 62)(16 77 63)(17 78 64)(18 79 33)(19 80 34)(20 81 35)(21 82 36)(22 83 37)(23 84 38)(24 85 39)(25 86 40)(26 87 41)(27 88 42)(28 89 43)(29 90 44)(30 91 45)(31 92 46)(32 93 47)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(33 95)(34 96)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 87)(58 88)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,94,48)(2,95,49)(3,96,50)(4,65,51)(5,66,52)(6,67,53)(7,68,54)(8,69,55)(9,70,56)(10,71,57)(11,72,58)(12,73,59)(13,74,60)(14,75,61)(15,76,62)(16,77,63)(17,78,64)(18,79,33)(19,80,34)(20,81,35)(21,82,36)(22,83,37)(23,84,38)(24,85,39)(25,86,40)(26,87,41)(27,88,42)(28,89,43)(29,90,44)(30,91,45)(31,92,46)(32,93,47), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,95)(34,96)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,94,48)(2,95,49)(3,96,50)(4,65,51)(5,66,52)(6,67,53)(7,68,54)(8,69,55)(9,70,56)(10,71,57)(11,72,58)(12,73,59)(13,74,60)(14,75,61)(15,76,62)(16,77,63)(17,78,64)(18,79,33)(19,80,34)(20,81,35)(21,82,36)(22,83,37)(23,84,38)(24,85,39)(25,86,40)(26,87,41)(27,88,42)(28,89,43)(29,90,44)(30,91,45)(31,92,46)(32,93,47), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,95)(34,96)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,94,48),(2,95,49),(3,96,50),(4,65,51),(5,66,52),(6,67,53),(7,68,54),(8,69,55),(9,70,56),(10,71,57),(11,72,58),(12,73,59),(13,74,60),(14,75,61),(15,76,62),(16,77,63),(17,78,64),(18,79,33),(19,80,34),(20,81,35),(21,82,36),(22,83,37),(23,84,38),(24,85,39),(25,86,40),(26,87,41),(27,88,42),(28,89,43),(29,90,44),(30,91,45),(31,92,46),(32,93,47)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(33,95),(34,96),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,87),(58,88),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94)]])

96 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D 6 8A8B8C8D8E8F8G8H12A12B16A···16H16I···16P24A24B24C24D32A···32P32Q···32AF48A···48H96A···96P
order122234444688888888121216···1616···162424242432···3232···3248···4896···96
size113321133211113333221···13···322221···13···32···22···2

96 irreducible representations

dim11111111111222222
type++++++
imageC1C2C2C2C4C4C8C8C16C16C32S3D6C4×S3S3×C8S3×C16S3×C32
kernelS3×C32C3⋊C32C96S3×C16C3⋊C16S3×C8C3⋊C8C4×S3Dic3D6S3C32C16C8C4C2C1
# reps1111224488321124816

Matrix representation of S3×C32 in GL2(𝔽97) generated by

460
046
,
096
196
,
096
960
G:=sub<GL(2,GF(97))| [46,0,0,46],[0,1,96,96],[0,96,96,0] >;

S3×C32 in GAP, Magma, Sage, TeX

S_3\times C_{32}
% in TeX

G:=Group("S3xC32");
// GroupNames label

G:=SmallGroup(192,5);
// by ID

G=gap.SmallGroup(192,5);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,36,58,80,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^32=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C32 in TeX

׿
×
𝔽