metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C96⋊6C2, C32⋊3S3, D6.C16, C3⋊1M6(2), C16.20D6, Dic3.C16, C48.25C22, C3⋊C32⋊4C2, C3⋊C8.2C8, C3⋊C16.2C4, (S3×C8).2C4, (C4×S3).2C8, C4.17(S3×C8), C8.37(C4×S3), C2.3(S3×C16), C6.2(C2×C16), (S3×C16).2C2, C24.58(C2×C4), C12.22(C2×C8), SmallGroup(192,6)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C96⋊C2
G = < a,b | a96=b2=1, bab=a17 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 18)(3 35)(4 52)(5 69)(6 86)(8 24)(9 41)(10 58)(11 75)(12 92)(14 30)(15 47)(16 64)(17 81)(20 36)(21 53)(22 70)(23 87)(26 42)(27 59)(28 76)(29 93)(32 48)(33 65)(34 82)(38 54)(39 71)(40 88)(44 60)(45 77)(46 94)(50 66)(51 83)(56 72)(57 89)(62 78)(63 95)(68 84)(74 90)(80 96)
G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,18)(3,35)(4,52)(5,69)(6,86)(8,24)(9,41)(10,58)(11,75)(12,92)(14,30)(15,47)(16,64)(17,81)(20,36)(21,53)(22,70)(23,87)(26,42)(27,59)(28,76)(29,93)(32,48)(33,65)(34,82)(38,54)(39,71)(40,88)(44,60)(45,77)(46,94)(50,66)(51,83)(56,72)(57,89)(62,78)(63,95)(68,84)(74,90)(80,96)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,18)(3,35)(4,52)(5,69)(6,86)(8,24)(9,41)(10,58)(11,75)(12,92)(14,30)(15,47)(16,64)(17,81)(20,36)(21,53)(22,70)(23,87)(26,42)(27,59)(28,76)(29,93)(32,48)(33,65)(34,82)(38,54)(39,71)(40,88)(44,60)(45,77)(46,94)(50,66)(51,83)(56,72)(57,89)(62,78)(63,95)(68,84)(74,90)(80,96) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,18),(3,35),(4,52),(5,69),(6,86),(8,24),(9,41),(10,58),(11,75),(12,92),(14,30),(15,47),(16,64),(17,81),(20,36),(21,53),(22,70),(23,87),(26,42),(27,59),(28,76),(29,93),(32,48),(33,65),(34,82),(38,54),(39,71),(40,88),(44,60),(45,77),(46,94),(50,66),(51,83),(56,72),(57,89),(62,78),(63,95),(68,84),(74,90),(80,96)]])
72 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 6 | 8A | 8B | 8C | 8D | 8E | 8F | 12A | 12B | 16A | ··· | 16H | 16I | 16J | 16K | 16L | 24A | 24B | 24C | 24D | 32A | ··· | 32H | 32I | ··· | 32P | 48A | ··· | 48H | 96A | ··· | 96P |
order | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 16 | ··· | 16 | 16 | 16 | 16 | 16 | 24 | 24 | 24 | 24 | 32 | ··· | 32 | 32 | ··· | 32 | 48 | ··· | 48 | 96 | ··· | 96 |
size | 1 | 1 | 6 | 2 | 1 | 1 | 6 | 2 | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 2 | 1 | ··· | 1 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 2 | ··· | 2 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | C16 | S3 | D6 | C4×S3 | S3×C8 | M6(2) | S3×C16 | C96⋊C2 |
kernel | C96⋊C2 | C3⋊C32 | C96 | S3×C16 | C3⋊C16 | S3×C8 | C3⋊C8 | C4×S3 | Dic3 | D6 | C32 | C16 | C8 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 1 | 1 | 2 | 4 | 8 | 8 | 16 |
Matrix representation of C96⋊C2 ►in GL2(𝔽17) generated by
15 | 10 |
1 | 0 |
1 | 2 |
0 | 16 |
G:=sub<GL(2,GF(17))| [15,1,10,0],[1,0,2,16] >;
C96⋊C2 in GAP, Magma, Sage, TeX
C_{96}\rtimes C_2
% in TeX
G:=Group("C96:C2");
// GroupNames label
G:=SmallGroup(192,6);
// by ID
G=gap.SmallGroup(192,6);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,36,58,80,102,6278]);
// Polycyclic
G:=Group<a,b|a^96=b^2=1,b*a*b=a^17>;
// generators/relations
Export