Extensions 1→N→G→Q→1 with N=C2xC8 and Q=C12

Direct product G=NxQ with N=C2xC8 and Q=C12
dρLabelID
C2xC4xC24192C2xC4xC24192,835

Semidirect products G=N:Q with N=C2xC8 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C2xC8):1C12 = C3xC4.9C42φ: C12/C3C4 ⊆ Aut C2xC8484(C2xC8):1C12192,143
(C2xC8):2C12 = C3xM4(2):4C4φ: C12/C3C4 ⊆ Aut C2xC8484(C2xC8):2C12192,150
(C2xC8):3C12 = C3xC22.7C42φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8):3C12192,142
(C2xC8):4C12 = C3xC22.4Q16φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8):4C12192,146
(C2xC8):5C12 = C6xC2.D8φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8):5C12192,859
(C2xC8):6C12 = C3xC23.25D4φ: C12/C6C2 ⊆ Aut C2xC896(C2xC8):6C12192,860
(C2xC8):7C12 = C6xC4.Q8φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8):7C12192,858
(C2xC8):8C12 = C6xC8:C4φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8):8C12192,836
(C2xC8):9C12 = C3xC8o2M4(2)φ: C12/C6C2 ⊆ Aut C2xC896(C2xC8):9C12192,838

Non-split extensions G=N.Q with N=C2xC8 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C2xC8).1C12 = C3xC4.10C42φ: C12/C3C4 ⊆ Aut C2xC8484(C2xC8).1C12192,144
(C2xC8).2C12 = C3xC16:C4φ: C12/C3C4 ⊆ Aut C2xC8484(C2xC8).2C12192,153
(C2xC8).3C12 = C3xC23.C8φ: C12/C3C4 ⊆ Aut C2xC8484(C2xC8).3C12192,155
(C2xC8).4C12 = C3xC8:C8φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8).4C12192,128
(C2xC8).5C12 = C3xC4.C42φ: C12/C6C2 ⊆ Aut C2xC896(C2xC8).5C12192,147
(C2xC8).6C12 = C3xC22:C16φ: C12/C6C2 ⊆ Aut C2xC896(C2xC8).6C12192,154
(C2xC8).7C12 = C3xC4:C16φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8).7C12192,169
(C2xC8).8C12 = C3xC8:1C8φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8).8C12192,141
(C2xC8).9C12 = C3xC8.C8φ: C12/C6C2 ⊆ Aut C2xC8482(C2xC8).9C12192,170
(C2xC8).10C12 = C3xC8:2C8φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8).10C12192,140
(C2xC8).11C12 = C6xC8.C4φ: C12/C6C2 ⊆ Aut C2xC896(C2xC8).11C12192,862
(C2xC8).12C12 = C3xC16:5C4φ: C12/C6C2 ⊆ Aut C2xC8192(C2xC8).12C12192,152
(C2xC8).13C12 = C3xM6(2)φ: C12/C6C2 ⊆ Aut C2xC8962(C2xC8).13C12192,176
(C2xC8).14C12 = C6xM5(2)φ: C12/C6C2 ⊆ Aut C2xC896(C2xC8).14C12192,936

׿
x
:
Z
F
o
wr
Q
<