Extensions 1→N→G→Q→1 with N=C6xQ16 and Q=C2

Direct product G=NxQ with N=C6xQ16 and Q=C2
dρLabelID
C2xC6xQ16192C2xC6xQ16192,1460

Semidirect products G=N:Q with N=C6xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xQ16):1C2 = C24.27C23φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16):1C2192,738
(C6xQ16):2C2 = C24.29D4φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16):2C2192,751
(C6xQ16):3C2 = D12.30D4φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16):3C2192,1325
(C6xQ16):4C2 = C2xC8.6D6φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):4C2192,737
(C6xQ16):5C2 = D6:3Q16φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):5C2192,747
(C6xQ16):6C2 = C24.28D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):6C2192,750
(C6xQ16):7C2 = C2xS3xQ16φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):7C2192,1322
(C6xQ16):8C2 = C2xD24:C2φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):8C2192,1324
(C6xQ16):9C2 = C24.36D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):9C2192,748
(C6xQ16):10C2 = C24.37D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):10C2192,749
(C6xQ16):11C2 = C2xQ16:S3φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):11C2192,1323
(C6xQ16):12C2 = (C2xQ16):S3φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):12C2192,744
(C6xQ16):13C2 = D6:5Q16φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):13C2192,745
(C6xQ16):14C2 = D12.17D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):14C2192,746
(C6xQ16):15C2 = C3xC22:Q16φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):15C2192,884
(C6xQ16):16C2 = C3xD4.7D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):16C2192,885
(C6xQ16):17C2 = C3xQ8.D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):17C2192,897
(C6xQ16):18C2 = C3xC8.18D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):18C2192,900
(C6xQ16):19C2 = C3xC8.12D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):19C2192,928
(C6xQ16):20C2 = C6xSD32φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):20C2192,939
(C6xQ16):21C2 = C3xC8.D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):21C2192,903
(C6xQ16):22C2 = C3xD4.5D4φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16):22C2192,906
(C6xQ16):23C2 = C3xC8.2D4φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):23C2192,930
(C6xQ16):24C2 = C3xQ32:C2φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16):24C2192,943
(C6xQ16):25C2 = C6xC8.C22φ: C2/C1C2 ⊆ Out C6xQ1696(C6xQ16):25C2192,1463
(C6xQ16):26C2 = C3xQ8oD8φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16):26C2192,1467
(C6xQ16):27C2 = C6xC4oD8φ: trivial image96(C6xQ16):27C2192,1461

Non-split extensions G=N.Q with N=C6xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xQ16).1C2 = Q16.Dic3φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16).1C2192,124
(C6xQ16).2C2 = C6.5Q32φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).2C2192,123
(C6xQ16).3C2 = C2xC3:Q32φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).3C2192,739
(C6xQ16).4C2 = Dic3xQ16φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).4C2192,740
(C6xQ16).5C2 = C24.26D4φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).5C2192,742
(C6xQ16).6C2 = Q16:Dic3φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).6C2192,743
(C6xQ16).7C2 = C3xC2.Q32φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).7C2192,164
(C6xQ16).8C2 = Dic3:3Q16φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).8C2192,741
(C6xQ16).9C2 = C3xC4:2Q16φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).9C2192,895
(C6xQ16).10C2 = C3xC4:Q16φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).10C2192,927
(C6xQ16).11C2 = C6xQ32φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).11C2192,940
(C6xQ16).12C2 = C3xC8.17D4φ: C2/C1C2 ⊆ Out C6xQ16964(C6xQ16).12C2192,168
(C6xQ16).13C2 = C3xQ16:C4φ: C2/C1C2 ⊆ Out C6xQ16192(C6xQ16).13C2192,874
(C6xQ16).14C2 = C12xQ16φ: trivial image192(C6xQ16).14C2192,872

׿
x
:
Z
F
o
wr
Q
<