Copied to
clipboard

G = C2xQ16:S3order 192 = 26·3

Direct product of C2 and Q16:S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xQ16:S3, Q16:8D6, C24.41C23, C12.11C24, D12.6C23, Dic6.7C23, C4.47(S3xD4), C3:C8.4C23, (C2xQ16):11S3, (C6xQ16):11C2, (C4xS3).17D4, D6.52(C2xD4), C12.86(C2xD4), (C2xC8).104D6, (S3xQ8):7C22, C6:3(C8.C22), (C4xS3).6C23, C8.13(C22xS3), C4.11(S3xC23), (C2xQ8).177D6, C3:Q16:9C22, C8:S3:14C22, C24:C2:15C22, (C3xQ8).5C23, Dic3.57(C2xD4), (C3xQ16):12C22, Q8:2S3:9C22, C6.112(C22xD4), C22.143(S3xD4), Q8.15(C22xS3), (C2xC24).152C22, (C2xC12).528C23, (C2xDic3).194D4, (C22xS3).100D4, (C6xQ8).150C22, Q8:3S3.4C22, (C2xD12).179C22, (C2xDic6).199C22, (C2xS3xQ8):16C2, C2.85(C2xS3xD4), (C2xC8:S3):9C2, C3:3(C2xC8.C22), (C2xC24:C2):25C2, (C2xC3:Q16):28C2, (C2xC6).401(C2xD4), (C2xQ8:2S3):27C2, (C2xC3:C8).181C22, (S3xC2xC4).158C22, (C2xQ8:3S3).8C2, (C2xC4).616(C22xS3), SmallGroup(192,1323)

Series: Derived Chief Lower central Upper central

C1C12 — C2xQ16:S3
C1C3C6C12C4xS3S3xC2xC4C2xS3xQ8 — C2xQ16:S3
C3C6C12 — C2xQ16:S3
C1C22C2xC4C2xQ16

Generators and relations for C2xQ16:S3
 G = < a,b,c,d,e | a2=b8=d3=e2=1, c2=b4, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, ebe=b5, cd=dc, ece=b4c, ede=d-1 >

Subgroups: 664 in 258 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC8, C2xC8, M4(2), SD16, Q16, Q16, C22xC4, C2xD4, C2xQ8, C2xQ8, C4oD4, C3:C8, C24, Dic6, Dic6, C4xS3, C4xS3, D12, D12, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C3xQ8, C22xS3, C22xS3, C2xM4(2), C2xSD16, C2xQ16, C2xQ16, C8.C22, C22xQ8, C2xC4oD4, C8:S3, C24:C2, C2xC3:C8, Q8:2S3, C3:Q16, C2xC24, C3xQ16, C2xDic6, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, S3xQ8, S3xQ8, Q8:3S3, Q8:3S3, C6xQ8, C2xC8.C22, C2xC8:S3, C2xC24:C2, Q16:S3, C2xQ8:2S3, C2xC3:Q16, C6xQ16, C2xS3xQ8, C2xQ8:3S3, C2xQ16:S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C8.C22, C22xD4, S3xD4, S3xC23, C2xC8.C22, Q16:S3, C2xS3xD4, C2xQ16:S3

Smallest permutation representation of C2xQ16:S3
On 96 points
Generators in S96
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 49)(24 50)(25 89)(26 90)(27 91)(28 92)(29 93)(30 94)(31 95)(32 96)(33 83)(34 84)(35 85)(36 86)(37 87)(38 88)(39 81)(40 82)(41 71)(42 72)(43 65)(44 66)(45 67)(46 68)(47 69)(48 70)(57 77)(58 78)(59 79)(60 80)(61 73)(62 74)(63 75)(64 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 54 5 50)(2 53 6 49)(3 52 7 56)(4 51 8 55)(9 24 13 20)(10 23 14 19)(11 22 15 18)(12 21 16 17)(25 35 29 39)(26 34 30 38)(27 33 31 37)(28 40 32 36)(41 77 45 73)(42 76 46 80)(43 75 47 79)(44 74 48 78)(57 67 61 71)(58 66 62 70)(59 65 63 69)(60 72 64 68)(81 89 85 93)(82 96 86 92)(83 95 87 91)(84 94 88 90)
(1 84 79)(2 85 80)(3 86 73)(4 87 74)(5 88 75)(6 81 76)(7 82 77)(8 83 78)(9 38 63)(10 39 64)(11 40 57)(12 33 58)(13 34 59)(14 35 60)(15 36 61)(16 37 62)(17 27 70)(18 28 71)(19 29 72)(20 30 65)(21 31 66)(22 32 67)(23 25 68)(24 26 69)(41 52 92)(42 53 93)(43 54 94)(44 55 95)(45 56 96)(46 49 89)(47 50 90)(48 51 91)
(1 50)(2 55)(3 52)(4 49)(5 54)(6 51)(7 56)(8 53)(9 20)(10 17)(11 22)(12 19)(13 24)(14 21)(15 18)(16 23)(25 62)(26 59)(27 64)(28 61)(29 58)(30 63)(31 60)(32 57)(33 72)(34 69)(35 66)(36 71)(37 68)(38 65)(39 70)(40 67)(41 86)(42 83)(43 88)(44 85)(45 82)(46 87)(47 84)(48 81)(73 92)(74 89)(75 94)(76 91)(77 96)(78 93)(79 90)(80 95)

G:=sub<Sym(96)| (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,81)(40,82)(41,71)(42,72)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(57,77)(58,78)(59,79)(60,80)(61,73)(62,74)(63,75)(64,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,54,5,50)(2,53,6,49)(3,52,7,56)(4,51,8,55)(9,24,13,20)(10,23,14,19)(11,22,15,18)(12,21,16,17)(25,35,29,39)(26,34,30,38)(27,33,31,37)(28,40,32,36)(41,77,45,73)(42,76,46,80)(43,75,47,79)(44,74,48,78)(57,67,61,71)(58,66,62,70)(59,65,63,69)(60,72,64,68)(81,89,85,93)(82,96,86,92)(83,95,87,91)(84,94,88,90), (1,84,79)(2,85,80)(3,86,73)(4,87,74)(5,88,75)(6,81,76)(7,82,77)(8,83,78)(9,38,63)(10,39,64)(11,40,57)(12,33,58)(13,34,59)(14,35,60)(15,36,61)(16,37,62)(17,27,70)(18,28,71)(19,29,72)(20,30,65)(21,31,66)(22,32,67)(23,25,68)(24,26,69)(41,52,92)(42,53,93)(43,54,94)(44,55,95)(45,56,96)(46,49,89)(47,50,90)(48,51,91), (1,50)(2,55)(3,52)(4,49)(5,54)(6,51)(7,56)(8,53)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23)(25,62)(26,59)(27,64)(28,61)(29,58)(30,63)(31,60)(32,57)(33,72)(34,69)(35,66)(36,71)(37,68)(38,65)(39,70)(40,67)(41,86)(42,83)(43,88)(44,85)(45,82)(46,87)(47,84)(48,81)(73,92)(74,89)(75,94)(76,91)(77,96)(78,93)(79,90)(80,95)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,81)(40,82)(41,71)(42,72)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(57,77)(58,78)(59,79)(60,80)(61,73)(62,74)(63,75)(64,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,54,5,50)(2,53,6,49)(3,52,7,56)(4,51,8,55)(9,24,13,20)(10,23,14,19)(11,22,15,18)(12,21,16,17)(25,35,29,39)(26,34,30,38)(27,33,31,37)(28,40,32,36)(41,77,45,73)(42,76,46,80)(43,75,47,79)(44,74,48,78)(57,67,61,71)(58,66,62,70)(59,65,63,69)(60,72,64,68)(81,89,85,93)(82,96,86,92)(83,95,87,91)(84,94,88,90), (1,84,79)(2,85,80)(3,86,73)(4,87,74)(5,88,75)(6,81,76)(7,82,77)(8,83,78)(9,38,63)(10,39,64)(11,40,57)(12,33,58)(13,34,59)(14,35,60)(15,36,61)(16,37,62)(17,27,70)(18,28,71)(19,29,72)(20,30,65)(21,31,66)(22,32,67)(23,25,68)(24,26,69)(41,52,92)(42,53,93)(43,54,94)(44,55,95)(45,56,96)(46,49,89)(47,50,90)(48,51,91), (1,50)(2,55)(3,52)(4,49)(5,54)(6,51)(7,56)(8,53)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23)(25,62)(26,59)(27,64)(28,61)(29,58)(30,63)(31,60)(32,57)(33,72)(34,69)(35,66)(36,71)(37,68)(38,65)(39,70)(40,67)(41,86)(42,83)(43,88)(44,85)(45,82)(46,87)(47,84)(48,81)(73,92)(74,89)(75,94)(76,91)(77,96)(78,93)(79,90)(80,95) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,49),(24,50),(25,89),(26,90),(27,91),(28,92),(29,93),(30,94),(31,95),(32,96),(33,83),(34,84),(35,85),(36,86),(37,87),(38,88),(39,81),(40,82),(41,71),(42,72),(43,65),(44,66),(45,67),(46,68),(47,69),(48,70),(57,77),(58,78),(59,79),(60,80),(61,73),(62,74),(63,75),(64,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,54,5,50),(2,53,6,49),(3,52,7,56),(4,51,8,55),(9,24,13,20),(10,23,14,19),(11,22,15,18),(12,21,16,17),(25,35,29,39),(26,34,30,38),(27,33,31,37),(28,40,32,36),(41,77,45,73),(42,76,46,80),(43,75,47,79),(44,74,48,78),(57,67,61,71),(58,66,62,70),(59,65,63,69),(60,72,64,68),(81,89,85,93),(82,96,86,92),(83,95,87,91),(84,94,88,90)], [(1,84,79),(2,85,80),(3,86,73),(4,87,74),(5,88,75),(6,81,76),(7,82,77),(8,83,78),(9,38,63),(10,39,64),(11,40,57),(12,33,58),(13,34,59),(14,35,60),(15,36,61),(16,37,62),(17,27,70),(18,28,71),(19,29,72),(20,30,65),(21,31,66),(22,32,67),(23,25,68),(24,26,69),(41,52,92),(42,53,93),(43,54,94),(44,55,95),(45,56,96),(46,49,89),(47,50,90),(48,51,91)], [(1,50),(2,55),(3,52),(4,49),(5,54),(6,51),(7,56),(8,53),(9,20),(10,17),(11,22),(12,19),(13,24),(14,21),(15,18),(16,23),(25,62),(26,59),(27,64),(28,61),(29,58),(30,63),(31,60),(32,57),(33,72),(34,69),(35,66),(36,71),(37,68),(38,65),(39,70),(40,67),(41,86),(42,83),(43,88),(44,85),(45,82),(46,87),(47,84),(48,81),(73,92),(74,89),(75,94),(76,91),(77,96),(78,93),(79,90),(80,95)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222234444444444666888812121212121224242424
size111166121222244446612122224412124488884444

36 irreducible representations

dim11111111122222224444
type++++++++++++++++-++
imageC1C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6C8.C22S3xD4S3xD4Q16:S3
kernelC2xQ16:S3C2xC8:S3C2xC24:C2Q16:S3C2xQ8:2S3C2xC3:Q16C6xQ16C2xS3xQ8C2xQ8:3S3C2xQ16C4xS3C2xDic3C22xS3C2xC8Q16C2xQ8C6C4C22C2
# reps11181111112111422114

Matrix representation of C2xQ16:S3 in GL8(F73)

720000000
072000000
007200000
000720000
000072000
000007200
000000720
000000072
,
534534340000
67590340000
04514280000
6706200000
000031623162
000011421142
000042113162
000062311142
,
001720000
7272210000
00100000
720100000
0000371500
00007236050
00005003672
0000050137
,
721000000
720000000
720010000
0172720000
00000100
0000727200
00000001
0000007272
,
7272210000
001720000
00100000
072100000
0000371500
000037362323
0000230371
000050503736

G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[53,67,0,67,0,0,0,0,45,59,45,0,0,0,0,0,34,0,14,6,0,0,0,0,34,34,28,20,0,0,0,0,0,0,0,0,31,11,42,62,0,0,0,0,62,42,11,31,0,0,0,0,31,11,31,11,0,0,0,0,62,42,62,42],[0,72,0,72,0,0,0,0,0,72,0,0,0,0,0,0,1,2,1,1,0,0,0,0,72,1,0,0,0,0,0,0,0,0,0,0,37,72,50,0,0,0,0,0,1,36,0,50,0,0,0,0,50,0,36,1,0,0,0,0,0,50,72,37],[72,72,72,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72],[72,0,0,0,0,0,0,0,72,0,0,72,0,0,0,0,2,1,1,1,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,37,37,23,50,0,0,0,0,1,36,0,50,0,0,0,0,50,23,37,37,0,0,0,0,0,23,1,36] >;

C2xQ16:S3 in GAP, Magma, Sage, TeX

C_2\times Q_{16}\rtimes S_3
% in TeX

G:=Group("C2xQ16:S3");
// GroupNames label

G:=SmallGroup(192,1323);
// by ID

G=gap.SmallGroup(192,1323);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,1123,185,136,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=d^3=e^2=1,c^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e=b^5,c*d=d*c,e*c*e=b^4*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<